Matrix
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 31892   Accepted: 11594

Description

Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).

We can change the matrix in the following way. Given a rectangle
whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2),
we change all the elements in the rectangle by using "not" operation (if
it is a '0' then change it into '1' otherwise change it into '0'). To
maintain the information of the matrix, you are asked to write a program
to receive and execute two kinds of instructions.

1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2
<= n) changes the matrix by using the rectangle whose upper-left
corner is (x1, y1) and lower-right corner is (x2, y2).

2. Q x y (1 <= x, y <= n) querys A[x, y].

Input

The
first line of the input is an integer X (X <= 10) representing the
number of test cases. The following X blocks each represents a test
case.

The first line of each block contains two numbers N and T (2 <= N
<= 1000, 1 <= T <= 50000) representing the size of the matrix
and the number of the instructions. The following T lines each
represents an instruction having the format "Q x y" or "C x1 y1 x2 y2",
which has been described above.

Output

For each querying output one line, which has an integer representing A[x, y].

There is a blank line between every two continuous test cases.

Sample Input

1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1

Sample Output

1
0
0
1 解体心得:
  • 题意就是给你一个矩阵,你可以选择一个子矩阵来进行0-1反转,然后单点查询0-1
  • 刚开始什么都没想,直接写了一个二维线段树,非常暴力,复杂度是n2logn,然后理所当然的TLE。
  • 后来发现线段树就维护一个0-1值十分的浪费,然后想了一下不就是一个树状数组就可以解决。直接记录变换次数就行了,偶数次变换就是没有变化,然后记录前缀和。但是这个题要注意的是用二维树状数组。二维树状数组的用法直接看代码就行了。
  • 在写二维树状数组的时候要注意就是前缀和记录时要容斥定理解决重复区间维护的问题。
#include <algorithm>
#include <stdio.h>
#include <cstring>
using namespace std;
const int maxn = 1010; int sum[maxn][maxn],n,m; int lowbit(int x) {
return x&-x;
} void add(int x,int y,int va) {
if(x < 1 || y < 1 || x > n || y > n)
return ;
for(int i=x;i<=n;i+=lowbit(i))
for(int j=y;j<=n;j+=lowbit(j))
sum[i][j] += va;
} int Query(int x,int y) {
int Sum = 0;
for(int i=x;i>0;i-=lowbit(i))
for(int j=y;j>0;j-=lowbit(j))
Sum += sum[i][j];
return Sum;
} int main() {
int t;
scanf("%d",&t);
while(t--) {
scanf("%d%d",&n,&m);
memset(sum,0,sizeof(sum));
while(m--) {
char s[3];
scanf("%s",s);
if(s[0] == 'C') {
int x1,y1,x2,y2;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
add(x1,y1,1);
add(x1,y2+1,-1);
add(x2+1,y1,-1);
add(x2+1,y2+1,1);
} else {
int x,y;
scanf("%d%d",&x,&y);
int ans = Query(x,y);
printf("%d\n",ans%2);
}
}
printf("\n");
}
return 0;
}

POJ-2155:Matrix(二维树状数祖)的更多相关文章

  1. POJ 2155 Matrix(二维树状数组,绝对具体)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Descripti ...

  2. poj 2155 Matrix (二维树状数组)

    题意:给你一个矩阵开始全是0,然后给你两种指令,第一种:C x1,y1,x2,y2 就是将左上角为x1,y1,右下角为x2,y2,的这个矩阵内的数字全部翻转,0变1,1变0 第二种:Q x1 y1,输 ...

  3. POJ 2155:Matrix 二维树状数组

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 21757   Accepted: 8141 Descripti ...

  4. POJ 2155 Matrix (二维线段树入门,成段更新,单点查询 / 二维树状数组,区间更新,单点查询)

    题意: 有一个n*n的矩阵,初始化全部为0.有2中操作: 1.给一个子矩阵,将这个子矩阵里面所有的0变成1,1变成0:2.询问某点的值 方法一:二维线段树 参考链接: http://blog.csdn ...

  5. [poj2155]Matrix(二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25004   Accepted: 9261 Descripti ...

  6. 【poj2155】Matrix(二维树状数组区间更新+单点查询)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  7. POJ1195Mobile phones (从二维树状数组到cdq分治)

    Suppose that the fourth generation mobile phone base stations in the Tampere area operate as follows ...

  8. POJ 2029 (二维树状数组)题解

    思路: 大力出奇迹,先用二维树状数组存,然后暴力枚举 算某个矩形区域的值的示意图如下,代码在下面慢慢找... 代码: #include<cstdio> #include<map> ...

  9. poj 2155 matrix 二维线段树 线段树套线段树

    题意 一个$n*n$矩阵,初始全为0,每次翻转一个子矩阵,然后单点查找 题解 任意一种能维护二维平面的数据结构都可以 我这里写的是二维线段树,因为四分树的写法复杂度可能会退化,因此考虑用树套树实现二维 ...

随机推荐

  1. 基于SAP Kyma的订单编排增强介绍

    尽管有一万个舍不得,2018年还是无可挽回地离我们远去了. 唯有SAP成都研究院的同事和我去年在网络上留下的这些痕迹,能证明2018年我们曾经很认真地去度过每一天: SAP成都研究院2018年总共87 ...

  2. 一个U盘黑掉你:TEENSY实战

    从传统意义讲,当你在电脑中插入一张CD/DVD光盘,或者插入一个USB设备时,可以通过自动播放来运行一个包含恶意的文件,不过自动播放功能被关闭时,autorun.inf文件就无法自动执行你的文件了.然 ...

  3. 中间人攻击-ARP毒化

    感谢Heee投递 中间人攻击虽然古老,但仍处于受到黑客攻击的危险中,可能会严重导致危害服务器和用户.仍然有很多变种的中间人攻击是有效的,它们能够很容易的欺骗外行并且入侵他们.正如字面意思一样,中间人攻 ...

  4. What Is a Computer System?

    What Is a Computer System? A combination of Five or Six Elements The term computer is used to descri ...

  5. Intellij IDEA 代码提示忽略大小写

    1.0 File >>Settings 2.0 Editor >> General >> Code Completion 如下图 选择 None

  6. nrf52832协议栈S132特性记录

    1. NRF52832带蓝牙协议栈的程序是如何跳转的? 答:如果NRF52832烧录了协议栈S132和用户应用程序,那么程序会先从协议栈的MBR启动,然后跳转到应用程序执行. 2. 关于中断的执行是怎 ...

  7. 解决pycharm无法导入本地包的问题

    在用python写爬虫程序时,import 行无法通过,具体情况如下: pycharm运行程序后,程序pass了,但是出现了警告,如下图所示: 这是由于该程序不在根目录下,无法导入本地包,解决办法如下 ...

  8. AngularJS简介-起步阶段

    AngularJS 是一个为动态WEB应用设计的结构框架,提供给大家一种新的开发应用方式,这种方式可以让你扩展HTML的语法,以弥补在构建动态WEB应用时静态文本的不足,从而在web应用程序中使用HT ...

  9. 【题解】洛谷P2704 [NOI2001] 炮兵阵地(状压DP)

    洛谷P2704:https://www.luogu.org/problemnew/show/P2704 思路 这道题一开始以为是什么基于状压的高端算法 没想到只是一道加了一行状态判断的状压DP而已 与 ...

  10. LwIP协议栈开发嵌入式网络的三种方法分析

    LwIP协议栈开发嵌入式网络的三种方法分析   摘要  轻量级的TCP/IP协议栈LwIP,提供了三种应用程序设计方法,且很容易被移植到多任务的操作系统中.本文结合μC/OS-II这一实时操作系统,以 ...