【题目大意】

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

【思路】

“怎么又是你系列……”思路和分块方法分别参见:

【莫比乌斯反演+容斥】BZOJ2301-[HAOI2011]Problem b(成为权限狗的第一题纪念!)的更多相关文章

  1. BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  2. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  3. 洛谷P2522 [HAOI2011]Problem b (莫比乌斯反演+容斥)

    题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Qu ...

  4. 2301: [HAOI2011]Problem b ( 分块+莫比乌斯反演+容斥)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 6015  Solved: 2741[Submit] ...

  5. BZOJ 2301 Problem b (莫比乌斯反演+容斥)

    这道题和 HDU-1695不同的是,a,c不一定是1了.还是莫比乌斯的套路,加上容斥求结果. 设\(F(n,m,k)\)为满足\(gcd(i,j)=k(1\leq i\leq n,1\leq j\le ...

  6. hdu1695(莫比乌斯反演+容斥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目是求 在区间[a,b]选一个数x,区间[c,d]选一个数y,求满足gcd(x,y) = k ...

  7. bzoj2440 完全平方数 莫比乌斯值+容斥+二分

    莫比乌斯值+容斥+二分 /** 题目:bzoj2440 完全平方数 链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第k个小x数 ...

  8. HDU 6053 TrickGCD 莫比乌斯函数/容斥/筛法

    题意:给出n个数$a[i]$,每个数可以变成不大于它的数,现问所有数的gcd大于1的方案数.其中$(n,a[i]<=1e5)$ 思路:鉴于a[i]不大,可以想到枚举gcd的值.考虑一个$gcd( ...

  9. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

随机推荐

  1. hdu 1070 Milk(贪心)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1070 Milk Time Limit: 2000/1000 MS (Java/Others)    M ...

  2. css文本垂直水平居中

    一.单行文本居中 .content{ height:100px; line-height:100px; text-align:center; border:1px solid red; } 效果图 二 ...

  3. Linux-进程间通信(六): 记录锁

    1. 记录锁:记录锁的功能是,当一个进程正在读或者修改文件的某个部分的时候,它可以阻止其他进程修改同一文件区: 2. fcntl记录锁: #include <fcntl.h> int fc ...

  4. LinkedList 源码分析

    LinkedList :双向链表结构, 内部存在frist节点 和 last节点.通过改变 首节点和 尾节点的引用来实现新增和修改 有一个内部类: //节点类,内部包括前节点和后节点,和数据项 // ...

  5. initWithFrame和initWithCoder的区别

    如果使用了Interface Builder 方式或nib,就不会调用initWithFrame方法,因为nib文件知道怎么初始化了, 但可以使用initWithCoder这一个更深层的init方法来 ...

  6. K8S的APISERVER,应用了HTTPS之后,命令行如何访问?

    用命令行总是很麻烦,因为要自定义一些证书的位置....... curl https://1.2.3.1:443/api/v1/nodes \ --cacert /etc/kubernetes/pki/ ...

  7. Linux下源码安装jdk

    1.到官网下载 http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

  8. 主机批量扫描工具fping,hping安装及使用

    https://blog.csdn.net/weixin_39762926/article/details/79476196?utm_source=blogxgwz0 https://blog.csd ...

  9. Android与html5交互 -- WebView使用(一)

    Android中使用WebView可加载html5,具体步骤如下: (前提:本地Html5存放到assets文件夹下) 一:使用WebView加载Html5,简单显示 1:清单文件中添加访问权限:an ...

  10. ng配置301及反向代理示例

    server { listen 80; server_name fpb.com; return 301 http://www.fpb.com$request_uri; } server { liste ...