本例子是测试一些数据分析模型的R值,R值越接近1,表明该模型越适合分析该数据集.

  本例子是在集成开发环境Aptana Studio 3 中创建 一个dataAnaly ,然后创建modelTest.py调用modelChose.py中的函数;在modelTest.py中需要import modelChose

  格式:from 模块名 import 函数名1,函数名2....

'''
Created on 2015-1-19 @author: xuzhengzhu
'''
#input files
import xlrd,openpyxl
import pandas as pd
from sklearn import cross_validation
from dataAnaly import modelChose
from sklearn.metrics import r2_score
import numpy as np file=pd.ExcelFile('e:\\report.xlsx')
data=file.parse('Sheet1')
n=len(data)
#init data
x=data[['myjg','tjg']]
y=data['byjg']
models=['linear_model.SGDRegressor','GradientBoostingRegressor','RandomForestRegressor','AdaBoostRegressor','BaggingRegressor','linear_model.LinearRegression','linear_model.LogisticRegression','svm.svr','svm.NuSVR']
m=len(models)
k=10
R2=np.zeros(k)
z=2
count=0
modelCount=0
#lookup get model object
for modelCount in range(m-1):
clf=modelChose.modelChose(models[modelCount])
R2=np.zeros(k)
count=0
#lookup folds
for train_index,test_index in cross_validation.KFold(n-z,n_folds=k):
x_train,x_test=x.ix[train_index],x.ix[test_index]
y_train,y_test=y[train_index],y[test_index]
clf.fit(x_train,y_train)
y_predict=clf.predict(x_test);
r2=r2_score(y_test,y_predict)
#print 'computed %d time(s) and R square is:%f ' %(count+1,r2)
R2[count]=r2
count+=1 print 'model choose is :',models[modelCount],'the mean of R2 is :',np.mean(R2)
y_validation = clf.predict(x.ix[(n-z):n])
r2_val=r2_score(y.ix[(n-z):n],y_validation)
print 'model choose is :',models[modelCount],'the validation ser R square is :%f ',r2_val
#print pd.DataFrame({'y_true':y.ix[(n-z):n,],'y_validation':y_validation})
modelCount+=1

modelTest.py

'''
Created on 2015-1-19
@author: xuzhengzhu
'''
from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn import linear_model
from sklearn.svm import SVR
from sklearn.svm import NuSVR def modelChose(modelName):
if(cmp(modelName,'linear_model.SGDRegressor')==0):
#print modelName
clf = linear_model.SGDRegressor()
return clf
elif (cmp(modelName,'GradientBoostingRegressor')==0):
#print modelName
clf = GradientBoostingRegressor()
return clf
elif (cmp(modelName,'RandomForestRegressor')==0):
#print modelName
clf = RandomForestRegressor()
return clf
elif (cmp(modelName,'AdaBoostRegressor')==0):
#print modelName
clf = AdaBoostRegressor()
return clf
elif (cmp(modelName,'BaggingRegressor')==0):
#print modelName
clf = BaggingRegressor()
return clf
elif (cmp(modelName,'linear_model.LinearRegression')==0):
#print modelName
clf = linear_model.LinearRegression()
return clf
elif (cmp(modelName,'linear_model.LogisticRegression')==0):
#print modelName
clf = linear_model.LogisticRegression()
return clf
elif (cmp(modelName,'svm.svr')==0):
#print modelName
clf = SVR()
return clf
elif (cmp(modelName,'svm.NuSVR')==0):
#print modelName
clf = NuSVR()
return clf
else:
#print modelName,count,'dddd',models[count]
return 1

modelChose.py

测试结果:

model choose is : linear_model.SGDRegressor the mean of R2 is : -4.40149514377e+158
model choose is : linear_model.SGDRegressor the validation ser R square is :%f  -1.69950873171e+175
model choose is : GradientBoostingRegressor the mean of R2 is : 0.06842532769
model choose is : GradientBoostingRegressor the validation ser R square is :%f  -0.706828939678
model choose is : RandomForestRegressor the mean of R2 is : 0.0656454293629
model choose is : RandomForestRegressor the validation ser R square is :%f  -1.62440546968
model choose is : AdaBoostRegressor the mean of R2 is : 0.0678670360111
model choose is : AdaBoostRegressor the validation ser R square is :%f  -0.743162901308
model choose is : BaggingRegressor the mean of R2 is : 0.0913739612188
model choose is : BaggingRegressor the validation ser R square is :%f  -1.11141498216
model choose is : linear_model.LinearRegression the mean of R2 is : 0.0976952970181
model choose is : linear_model.LinearRegression the validation ser R square is :%f  -15.3631379961
model choose is : linear_model.LogisticRegression the mean of R2 is : -0.224099722992
model choose is : linear_model.LogisticRegression the validation ser R square is :%f  0.588585017836
model choose is : svm.svr the mean of R2 is : -0.243679440381
model choose is : svm.svr the validation ser R square is :%f  -1.21033155027

python学习:两个py文件间的函数调用的更多相关文章

  1. Python包中 __init__.py文件的作用

    原创连接 https://www.cnblogs.com/AlwinXu/p/5598543.html Python包中 __init__.py文件的作用 在创建python包的过程中,IDE都会在包 ...

  2. Python_架构、同一台电脑上两个py文件通信、两台电脑如何通信、几十台电脑如何通信、更多电脑之间的通信、库、端口号

    1.架构 C/S架构(鼻祖) C:client  客户端 S:server  服务器 早期使用的一种架构,目前的各种app使用的就是这种架构,它的表现形式就是拥有专门的app. B/S架构(隶属于C/ ...

  3. python包中__init__.py文件的作用

    python包中__init__.py文件的作用 __init__.py文件最常用的作用是标识一个文件夹是一个 python包. __init__.py文件的另一个作用是定义模糊导入时要导入的内容. ...

  4. [python IO学习篇] 补充.py文件是中文, .ini文件内容是中文

    python 代码文件的编码.py文件默认是ASCII编码,中文在显示时会做一个ASCII到系统默认编码的转换,这时就会出错:SyntaxError: Non-ASCII character.需要在代 ...

  5. python学习两月总结_汇总大牛们的思想_值得收藏

    下面是我汇总的我学习两个月python(version:3.3.2)的所有笔记 你可以访问:http://www.python.org获取更多信息 你也可以访问:http://www.cnblogs. ...

  6. python 学习笔记(十二) 文件和序列化

    python 文件读写和序列化学习.## python文件读写`1 打开并且读取文件` f = open('openfile.txt','r') print(f.read()) f.close() ` ...

  7. Python学习(15)文件/IO

    目录 Python 文件I/O 打印到屏幕 读取键盘输入 打开和关闭文件 File对象属性 文件定位 重命名和删除文件 Python的目录 Python 文件I/O 本章只讲述所有基本的的I/O函数, ...

  8. 编写python程序和运行.py文件的方法步骤

    前提:已安装好 Subliume Test 3 且已经添加好python编译系统,已安装好python3.7 一.新建一个文本文档,将后缀名改为.py 二.使用 Subliume Test 3 打开该 ...

  9. python调用另一个.py文件中的类和函数

    同一文件夹下的调用 1.调用函数 A.py文件如下:def add(x,y):    print('和为:%d'%(x+y)) 在B.py文件中调用A.py的add函数如下: import AA.ad ...

随机推荐

  1. Linux网络编程:一个简单的正向代理服务器的实现

    Linux是一个可靠性非常高的操作系统,但是所有用过Linux的朋友都会感觉到, Linux和Windows这样的"傻瓜"操作系统(这里丝毫没有贬低Windows的意思,相反这应该 ...

  2. hihocoder 1145 : 幻想乡的日常

    #1145 : 幻想乡的日常 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 幻想乡一共有n处居所,编号从1到n.这些居所被n-1条边连起来,形成了一个树形的结构. 每处 ...

  3. connect-falsh的用法

    借鉴博客 http://yunkus.com/connect-flash-usage/

  4. hdu 2955(概率转化,01背包)

    Hot~~招聘——巴卡斯(杭州),壹晨仟阳(杭州),英雄互娱(杭州) (包括2016级新生)除了校赛,还有什么途径可以申请加入ACM校队? Robberies Time Limit: 2000/100 ...

  5. poj 1692(动态规划)

    Crossed Matchings Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2711   Accepted: 1759 ...

  6. python spyder 今天突然打不开了【已解决】

    python spyder 我是设置开机启动的,先出现dos窗口,然后是蜘蛛网,后面就什么都没有了.然后百度了半天,在csdn看到一篇文章,试了一下,内牛满面! 方法:C:\Documents and ...

  7. Python 一条语句如何在多行显示的问题

    在做python学习的时候,我照着pdf,敲代码,遇到一大难题: return render_to_response('index.html',{'title':'my page','user':us ...

  8. 2010-2011 ACM-ICPC, NEERC, Southern Subregional Contest C Explode 'Em All

    暴力枚举,状态压缩. 枚举哪几行放,复杂度为$O(2^{25})$,大概有$3000$多万种情况.假设有$x$行放了,没放的那几行状态或起来为$st$,如果$st$中$1$的个数大于$x$,那么不可取 ...

  9. CRT【p3868】[TJOI2009]猜数字

    Description 现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示.其中第二组中的数字是两两互素的.求最小的非负整数n ...

  10. Visual Studio Xamarin中找不到iOS模拟器

    Visual Studio Xamarin中找不到iOS模拟器 Visual Studio可以正常连接Mac系统,但是在测试时候,提示以下错误信息:Failed to start iOS Simula ...