bzoj3505 / P3166 [CQOI2014]数三角形
前置知识:某两个点$(x_{1},,y_{1}),(x_{2},y_{2})\quad (x_{1}<x_{2},y_{1}<y_{2})$所连成的线段穿过整点的个数为$gcd(x_{2}-x_{1},y_{2}-y_{1})-1$
“注意三角形的三点不能共线。”
暗示你可以处理出总方案再减去三点共线的方案。
显然,总方案就是在$(n+1)*(m+1)$个点中任选$3$个。于是$tot=C((n+1)*(m+1),3)$
现在我们要算出三点共线的方案
对于直线上的三点共线,显然$tot1=n*C(m,3)+m*C(n,3)$
对于斜线上的三点共线,我们可以根据前置知识↑↑枚举。
然鹅暴力枚举复杂度是达到$O(n^{2}m^{2})$的
所以我们需要转化
注意到其实我们可以只枚举$l=x_{2}-x_{1},r=y_{2}-y_{1}$,相当于把这两个数据看做一个矩形的长和宽。
蓝后我们要算出整个大矩形中有几个这样的小矩形:$(n-l+1)*(m-r+1)$
每个矩形中包含$2$条对角线,所以$tot2*=2$
所以斜线上的三点共线$tot2=\sum_{i=1}^{n}\sum_{j=1}^{m}(gcd(i,j)-1)*(n-i+1)*(m-j+1)$
代码中为了方便事先把$n,m$都$+1$
#include<iostream>
#include<cstdio>
#include<cstring>
#define re register
using namespace std;
typedef long long ll;
ll m,n,ans;
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int main(){
scanf("%lld%lld",&n,&m);++n;++m;
ll tmp=n*m;
ans=tmp*(tmp-)*(tmp-)/;
ans-=n*m*(m-)*(m-)/;
ans-=m*n*(n-)*(n-)/;//减去横向和纵向的三点共线
for(int i=;i<n;++i)
for(int j=;j<m;++j)
ans-=1ll*(gcd(i,j)-)*(n-i)*(m-j)*;
printf("%lld",ans);
return ;
return ;
}
bzoj3505 / P3166 [CQOI2014]数三角形的更多相关文章
- 【BZOJ3505】[Cqoi2014]数三角形 组合数
[BZOJ3505][Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. ...
- 【bzoj3505】[Cqoi2014]数三角形
[bzoj3505][Cqoi2014]数三角形 2014年5月15日3,5230 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4×4的网格上的一个三角 ...
- 「BZOJ3505」[CQOI2014] 数三角形
「BZOJ3505」[CQOI2014] 数三角形 这道题直接求不好做,考虑容斥,首先选出3个点不考虑是否合法的方案数为$C_{(n+1)*(m+1)}^{3}$,然后减去三点一线的个数就好了.显然不 ...
- BZOJ3505 & 洛谷P3166 [Cqoi2014]数三角形 【数学、数论】
题目 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. 输入格式 输入一行,包含两个空格分隔的正整数m和n. 输出格式 输出 ...
- 【bzoj3505】 Cqoi2014—数三角形
http://www.lydsy.com/JudgeOnline/problem.php?id=3505 (题目链接) 题意 给定一个n*m的网格,请计算三点都在格点上的三角形共有多少个. Solut ...
- 【bzoj3505】[Cqoi2014]数三角形 容斥原理
题目描述 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. 输入 输入一行,包含两个空格分隔的正整数m和n. 输出 输出一个 ...
- 【题解】洛谷P3166 [CQOI2014] 数三角形(组合+枚举)
洛谷P3166:https://www.luogu.org/problemnew/show/P3166 思路 用组合数求出所有的3个点组合(包含不合法的) 把横竖的3个点共线的去掉 把斜的3个点共线的 ...
- P3166 [CQOI2014]数三角形
传送门 直接求还要考虑各种不合法情况,不好计数 很容易想到容斥 把所有可能减去不合法的情况剩下的就是合法情况 那么我们只要任取不同的三点就是所有可能,不合法情况就是三点共线 对于两点 $(x_1,y_ ...
- 洛谷P3166 [CQOI2014]数三角形
题目描述 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形.注意三角形的三点不能共线. 输入输出格式 输入格式: 输入一行,包含两个空格分隔的正整数m和n ...
随机推荐
- Mysql----索引原理与慢查询优化
一 介绍 为何要有索引? 一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句 ...
- POJ-2777 Count Color(线段树,区间染色问题)
Count Color Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 40510 Accepted: 12215 Descrip ...
- HDU 6312 - Game - [博弈][杭电2018多校赛2]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6312 Problem Description Alice and Bob are playing a ...
- 【紫书】Tree UVA - 548 静态建树dfs
题意:给你中序后序 求某叶子节点使得从根到该节点权值和最小.若存在多个,输出其权值最小的那个. 题解:先建树,然后暴力dfs/bfs所有路径,取min 技巧:递归传参数,l1,r1,l2,r2, su ...
- iOS多线程编程之创建线程(转载)
一.创建和启动线程简单说明 一个NSThread对象就代表一条线程 (1)创建.启动线程 NSThread *thread = [[NSThread alloc] initWithTarget:sel ...
- python requests模块的两个方法content和text
requests模块下有两个获取内容的方法,很奇怪,都是获取请求后内容的方法,有什么区别呢?? 一.区别 content:返回bytes类型的数据也就是二进制数据 text:返回的就是纯文本(Unic ...
- LightOj 1248 - Dice (III)(几何分布+期望)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1248 题意:有一个 n 面的骰子,问至少看到所有的面一次的所需 掷骰子 的 次数的期望 ...
- Android内存泄漏的本质原因、解决办法、操作实例
今年最后一个迭代终于结束了,把过程中碰到的不熟悉的东西拉出来学习总结一下 内存泄漏的本质是:[一个(巨大的)短生命周期对象的引用被一个长生命周期(异步生命周期)的对象持有] 这个东西分为两个部 ...
- 网络密钥交换协议——Diffie-Hellman
Diffie-Hellman算法是一种交换密钥的算法. 它是眼下比較经常使用的密钥交换算法. 这样的算法的优点是能让两台计算机在不安全的网络环境中完毕密钥的交换. 下面是整个算法的过程.当中红色字体表 ...
- c/c++ 中的char* ,const char* 和 char* const 总结[转]
文章转自:c/c++ 中的char* ,const char* 和 char* const 总结 例1: char* str="abc";//错误写法 (在.c文件中是正确的) c ...