Introducing Deep Reinforcement
The manuscript of Deep Reinforcement Learning is available now! It makes significant improvements to Deep Reinforcement Learning: An Overview, which has received 100+ citations, by extending its latest version more than one year ago from 70 pages to 150 pages.
It draws a big picture of deep reinforcement learning (RL) with many details. It covers contemporary work in historical contexts. It endeavours to answer the following questions: 1) Why deep? 2) What is the state of the art? and, 3) What are the issues, and potential solutions? It attempts to help those who want to get more familiar with deep RL, and to serve as a reference for people interested in this fascinating area, like professors, researchers, students, engineers, managers, investors, etc. Shortcomings and mistakes are inevitable; comments and criticisms are welcome.
The manuscript introduces AI, machine learning, and deep learning briefly, and provides a mini tutorial for reinforcement learning. The following figure illustrates relationships among these concepts, with major contents for machine learning and AI .Deep reinforcement learning is reinforcement learning integrated with deep learning, or deep artificial neural networks. A blog is dedicated to Resources for Deep Reinforcement Learning.
The manuscript covers six core elements: value function, policy, reward, model, exploration vs. exploitation, and representation; six important mechanisms: attention and memory, unsupervised learning, hierarchical RL, multi-agent RL, relational RL, and learning to learn; and twelve applications: games, robotics, natural language processing (NLP), computer vision, finance, business management, healthcare, education, energy, transportation, computer systems, and, science, engineering, and art.
Deep reinforcement learning has made exceptional achievements, e.g., DQN applying to Atari games ignited this wave of deep RL, and AlphaGo (Zero) and DeepStack set landmarks for AI. Deep RL has many newly invented algorithms/architectures, e.g., DQN, A3C, TRPO, PPO, DDPG, Trust-PCL, GPS, UNREAL, DNC, etc. Moreover, deep RL has been enjoying very abound and diverse applications, e.g., Capture the Flag, Dota 2, StarCraft II, robotics, character animation, conversational AI, neural architecture design (AutoML), data center cooling, recommender systems, data augmentation, model compression, combinatorial optimization, program synthesis, theorem proving, medical imaging, music, and chemical retrosynthesis, so on and so forth. A blog is dedicated to Reinforcement Learning applications.
In general, RL is probably helpful, if a problem can be regarded as or transformed to a sequential decision making problem, and states, actions, maybe rewards, can be constructed; sometimes the problem may not appear as an RL problem on the surface. Roughly speaking, if a task involves some manual designed “strategy”, then there is a chance for reinforcement learning to help. Creativity would push the frontiers of deep RL further with respect to core elements, important mechanisms, and applications.
Albeit being so successful, deep RL encounters many issues, like credit assignment, sparse reward, sample efficiency, instability, divergence, interpretability, safety, etc.; even reproducibility is an issue.
Six research directions are proposed as both challenges and opporrtunities. There are already some progress in these directions, e.g., Dopamine, TStarBots, MOREL, GQN, visual reasoning, neural-symbolic learning, UPN, causal InfoGAN, meta-gradient RL, along with many applications as above.
- systematic, comparative study of deep RL algorithms
- “solve” multi-agent problems
- learn from entities, but not just raw inputs
- design an optimal representation for RL
- AutoRL
- develop killer applications for (deep) RL
It is desirable to integrate RL more deeply with AI, with more intelligence in the end-to-end mapping from raw inputs to decisions, to incorporate knowledge, to have common sense, to be more efficient, to be more interpretable, and to avoid obvious mistakes, etc., rather than working as a blackbox.
Deep learning and reinforcement learning, being selected as one of the MIT Technology Review 10 Breakthrough Technologies in 2013 and 2017 respectively, will play their crucial roles in achieving artificial general intelligence. David Silver proposed a conjecture: artificial intelligence = reinforcement learning + deep learning (AI = RL + DL). We will see both deep learning and reinforcement learning prospering in the coming years and beyond. Deep learning is exploding. It is the right time to nurture, educate and lead the market for reinforcement learning.
Deep learning, in this third wave of AI, will have deeper influences, as we have already seen from its many achievements. Reinforcement learning, as a more general learning and decision making paradigm, will deeply influence deep learning, machine learning, and artificial intelligence in general.
Introducing Deep Reinforcement的更多相关文章
- 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...
- (转) Playing FPS games with deep reinforcement learning
Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...
- (zhuan) Deep Reinforcement Learning Papers
Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...
- Learning Roadmap of Deep Reinforcement Learning
1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman ...
- (转) Deep Reinforcement Learning: Playing a Racing Game
Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playi ...
- 论文笔记之:Dueling Network Architectures for Deep Reinforcement Learning
Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN ...
- getting started with building a ROS simulation platform for Deep Reinforcement Learning
Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Le ...
- (转) Deep Reinforcement Learning: Pong from Pixels
Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from ...
- 论文笔记之:Deep Reinforcement Learning with Double Q-learning
Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法过高的估计在特 ...
随机推荐
- MySQL 5.7.18的安装与主从复制(转自:https://www.baidu.com/home/news/data/newspage?nid=9485770887287731252&n_typ)
CentOS6.7安装mysql5.7.18 1. 解压到/usr/local目录 # tar -zxvf mysql-5.7.18-linux-glibc2.5-i686.tar.gz -C /us ...
- 特征选择 - Filter、Wrapper、Embedded
Filter methods: information gain chi-square test fisher score correlation coefficient variance thres ...
- I.MX6 ar1020 SPI device driver hacking
/************************************************************************************ * I.MX6 ar1020 ...
- I.MX6 HUAWEI MU609 3G porting
/*************************************************************************** * I.MX6 HUAWEI MU609 3G ...
- opencv-python教程学习系列10-颜色空间转换
前言 opencv-python教程学习系列记录学习python-opencv过程的点滴,本文主要介绍颜色空间转换,坚持学习,共同进步. 系列教程参照OpenCV-Python中文教程: 系统环境 系 ...
- Unity 3D中 Ulua-UGUI简单的Demo——热更新的具体流程、使用说明
Ulua热更新具体流程.使用说明 本文提供全流程,中文翻译.Chinar坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) 1 -- 未完 1 -- ...
- HDU 5372 Segment Game (树状数组)
题意是指第i此插入操作,插入一条长度为i的线段,左端点在b[i],删除某一条线段,问每次插入操作时,被当前线段完全覆盖的线段的条数. 题解:对于新插入的线段,查询有多少个线段左端点大于等于该线段的左端 ...
- 偶尔用得上的MySQL操作
数据库编码 查看数据库编码 use xxx show variables like 'character_set_database'; 切换数据库编码 alter database xxx CHARA ...
- vue-cli 打包报错:Unexpected token: punc (()
vue-cli 打包报错: ERROR in static/js/vendor.ed7d2353f79d28a69f3d.js from UglifyJs Unexpected token: punc ...
- CF 914F Substrings in a String——bitset处理匹配
题目:http://codeforces.com/contest/914/problem/F 可以对原字符串的每种字母开一个 bitset .第 i 位的 1 表示这种字母在第 i 位出现了. 考虑能 ...