1. cross-fields搜索

  一个唯一标识,跨了多个field。比如一个人,标识,是姓名;一个建筑,它的标识是地址。姓名可以散落在多个field中,比如first_name和last_name中,地址可以散落在country,province,city中。跨多个field搜索一个标识,比如搜索一个人名,或者一个地址,就是cross-fields搜索。初步来说,如果要实现,可能用most_fields比较合适。因为best_fields是优先搜索单个field最匹配的结果,cross-fields本身就不是一个field的问题了。

增添字段:

POST /forum/article/_bulk
{ "update": { "_id": ""} }
{ "doc" : {"author_first_name" : "Peter", "author_last_name" : "Smith"} }
{ "update": { "_id": ""} }
{ "doc" : {"author_first_name" : "Smith", "author_last_name" : "Williams"} }
{ "update": { "_id": ""} }
{ "doc" : {"author_first_name" : "Jack", "author_last_name" : "Ma"} }
{ "update": { "_id": ""} }
{ "doc" : {"author_first_name" : "Robbin", "author_last_name" : "Li"} }
{ "update": { "_id": ""} }
{ "doc" : {"author_first_name" : "Tonny", "author_last_name" : "Peter Smith"} }

查询first_name和last_name中包含Peter Smith的doc

GET /forum/article/_search
{
"query": {
"multi_match": {
"query": "Peter Smith",
"type": "most_fields",
"fields": [ "author_first_name", "author_last_name" ]
}
}
}

Peter Smith,匹配author_first_name,匹配到了Smith,这时候它的分数很高,为什么?
  因为IDF分数高,IDF分数要高,那么这个匹配到的term(Smith),在所有doc中的出现频率要低,author_first_name field中,Smith就出现过1次
Peter Smith这个人,在doc 1,Smith在author_last_name中,但是 author_last_name 出现了两次 Smith,所以导致doc 1的IDF分数较低,这里就存在以下三个问题:

问题1:只是找到尽可能多的field匹配的doc,而不是某个field完全匹配的doc

  解决,最匹配的document被最先返回

问题2:most_fields,没办法用minimum_should_match去掉长尾数据,就是匹配的特别少的结果

  解决,可以使用minimum_should_match去掉长尾数据

问题3:TF/IDF算法,比如Peter Smith和Smith Williams,搜索Peter Smith的时候,由于first_name中很少有Smith的,所以query在所有document中的频率很低,得到的分数很高,可能Smith Williams反而会排在Peter Smith前面

  解决,Smith和Peter在一个field了,所以在所有document中出现的次数是均匀的,不会有极端的偏差,计算IDF的时候,将每个query在每个field中的IDF都取出来,取最小值,就不会出现极端情况下的极大值了

第一个办法:用copy_to,将多个field组合成一个field

  问题其实就出在有多个field,有多个field以后,就很尴尬,我们只要想办法将一个标识跨在多个field的情况,合并成一个field即可。比如说,一个人名,本来是first_name,last_name,现在合并成一个full_name

PUT /forum/_mapping/article
{
"properties": {
"new_author_first_name": {
"type": "string",
"copy_to": "new_author_full_name"
},
"new_author_last_name": {
"type": "string",
"copy_to": "new_author_full_name"
},
"new_author_full_name": {
"type": "string"
}
}
}

用了这个copy_to语法之后,就可以将多个字段的值拷贝到一个字段中,并建立倒排索引

POST /forum/article/_bulk
{ "update": { "_id": ""} }
{ "doc" : {"new_author_first_name" : "Peter", "new_author_last_name" : "Smith"} } --> Peter Smith
{ "update": { "_id": ""} }
{ "doc" : {"new_author_first_name" : "Smith", "new_author_last_name" : "Williams"} } --> Smith Williams
{ "update": { "_id": ""} }
{ "doc" : {"new_author_first_name" : "Jack", "new_author_last_name" : "Ma"} } --> Jack Ma
{ "update": { "_id": ""} }
{ "doc" : {"new_author_first_name" : "Robbin", "new_author_last_name" : "Li"} } --> Robbin Li
{ "update": { "_id": ""} }
{ "doc" : {"new_author_first_name" : "Tonny", "new_author_last_name" : "Peter Smith"} } --> Tonny Peter Smith

然后查询:

GET /forum/article/_search
{
"query": {
"match": {
"new_author_full_name": "Peter Smith"
}
}
}

Elasticsearch学习之深入搜索四 --- cross-fields搜索的更多相关文章

  1. Elasticsearch学习笔记(十四)relevance score相关性评分的计算(1)

    一.多shard场景下relevance score不准确问题     1.问题描述:            多个shard下,如果每个shard包含指定搜索条件的document数量不均匀的情况下, ...

  2. Elasticsearch学习之深入搜索三 --- best fields策略

    1. 为帖子数据增加content字段 POST /forum/article/_bulk { "} } { "doc" : {"content" : ...

  3. ElasticSearch 学习记录之ES高亮搜索

    高亮搜索 ES 通过在查询的时候可以在查询之后的字段数据加上html 标签字段,使文档在在web 界面上显示的时候是由颜色或者字体格式的 GET /product/_search { "si ...

  4. 【Elasticsearch学习】文档搜索全过程

    在ES执行分布式搜索时,分布式搜索操作需要分散到所有相关分片,若一个索引有3个主分片,每个主分片有一个副本分片,那么搜索请求会在这6个分片中随机选择3个分片,这3个分片有可能是主分片也可能是副本分片, ...

  5. Elasticsearch学习之深入搜索二 --- 搜索底层原理剖析

    1. 普通match如何转换为term+should { "match": { "title": "java elasticsearch"} ...

  6. Elasticsearch学习之深入搜索一 --- 提高查询的精准度

    1. 为帖子增加标题字段 POST /forum/article/_bulk { "} } { "doc" : {"title" : "th ...

  7. 【linux学习笔记四】文件搜索命令

    一 文件搜索 locate //在后台数据库中按文件名搜索 搜索速度更快 locate 文件名 //locate命令所搜索的后台数据库 /var/lib/mlocate //更新数据库 updated ...

  8. Elasticsearch是一个分布式可扩展的实时搜索和分析引擎,elasticsearch安装配置及中文分词

    http://fuxiaopang.gitbooks.io/learnelasticsearch/content/  (中文) 在Elasticsearch中,文档术语一种类型(type),各种各样的 ...

  9. ElasticSearch 学习记录之如任何设计可扩容的索引结构

    扩容设计 扩容的单元 一个分片即一个 Lucene 索引 ,一个 Elasticsearch 索引即一系列分片的集合 一个分片即为 扩容的单元 . 一个最小的索引拥有一个分片. 一个只有一个分片的索引 ...

  10. Elasticsearch 学习(一):入门

    一.概念 Elasticsearch 是一个实时分布式搜索和分析引擎.它用于全文搜索.结构化搜索.分析以及将这三者混合使用. 维基百科.英国卫报.StackOverflow.Github 等公司都在使 ...

随机推荐

  1. FunGene 功能基因数据库

    背景:16SrRNA 基因通常作为分子标记进行微生物群落结构的研究,但是它有一些明显的限制,比如16S rRNA基因在物种中会有多个拷贝,而且,由于16S rRNA基因的进化速率较慢,在物种间保守,会 ...

  2. T4使用经验

    .<#@ template debug="true" hostspecific="true" language="C#" #> ...

  3. 机器学习——使用Apriori算法进行关联分析

    从大规模的数据集中寻找隐含关系被称作为关联分析(association analysis)或者关联规则学习(association rule learning). Apriori算法 优点:易编码实现 ...

  4. windows reload()

    reload() 方法用于重新加载当前文档.如果该方法没有规定参数,或者参数是 false,它就会用 HTTP 头 If-Modified-Since 来检测服务器上的文档是否已改变.如果文档已改变, ...

  5. 【WP8】换肤功能的实现

    主题功能在移动开发中是最常见的功能之一,用的最多的是日间模式和夜间模式的切换,下面说说如何在WP上使用主题,不同主题的差别无非就是两种(颜色和图片),在WP上我们通常使用资源来设置颜色,系统提供了两种 ...

  6. MBProgressHUD 第三方库使用

    关键操作:   效果如下:   ViewController.h #import <UIKit/UIKit.h> #import "MBProgressHUD.h" @ ...

  7. Allure Report使用

    https://blog.csdn.net/liuchunming033/article/details/79624474#commentBox https://blog.csdn.net/lihua ...

  8. jQuery实现ToolTip元素定位显示功能示例

    记录下,以备将来用到 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http:// ...

  9. 3. beeGo 自己写Controller 和 请求数据处理

    Controller Controller等同于Django里的view,处理逻辑都是在Controller里面完成的,下面就写一个最简单的Controller. 我们在写自己的controller的 ...

  10. 如何在xml中设置textview不可见

    可见(visible)XML文件:android:visibility="visible"Java代码:view.setVisibility(View.VISIBLE);不可见(i ...