5. 集成学习(Ensemble Learning)GBDT
1. 集成学习(Ensemble Learning)原理
2. 集成学习(Ensemble Learning)Bagging
3. 集成学习(Ensemble Learning)随机森林(Random Forest)
4. 集成学习(Ensemble Learning)Adaboost
5. 集成学习(Ensemble Learning)GBDT
6. 集成学习(Ensemble Learning)算法比较
7. 集成学习(Ensemble Learning)Stacking
1. 前言
如果读了我之前的几篇集成学习的博文,相信读者们已经都对集成学习大部分知识很有了详细的学习。今天我们再来一个提升,就是我们的集大成者GBDT。GBDT在我们的Kaggle的比赛中基本获得了霸主地位,大部分的问题GBDT都能获得异常好的成绩。
2. GBDT原理
GBDT的中文名叫梯度提升树,GBDT也是集成学习Boosting家族的成员,但是却和传统的Adaboost有很大的不同。回顾下Adaboost,我们是利用前一轮迭代弱学习器的误差率来更新训练集的权重,这样一轮轮的迭代下去。GBDT也是迭代,使用了前向分布算法,但是弱学习器限定了只能使用CART回归树模型,同时迭代思路和Adaboost也有所不同。
在GBDT的迭代中,假设我们前一轮迭代得到的强学习器是\(f_{t-1}(x)\), 损失函数是\(L(y,f_{t-1}(x))\),我们本轮迭代的目标是找到一个CART回归树模型的弱学习器\(h_t(x)\),让本轮的损失函数\(L(y,f_t(x)=L(y,f_{t-1}(x)+h_t(x))\)最小。也就是说,本轮迭代找到决策树,要让样本的损失尽量变得更小。即梯度提升树是用CART树去拟合前一个弱模型的损失函数的残差,使得本轮的损失更小。
3. 提升树
回归问题提升树的前向分步算法:
假设第\(m\)个模型是\(f_m(x)\),则有以下公式
\[
f_0(x)=0
\]
\[
f_m(x)=f_{m-1}(x)+T(x,\theta_m)
\]
\[
f_M(x)=\sum_{m=1}^MT(x,\theta_m)
\]
有了模型函数后,我们就得到了损失函数:
\[
L(y,f_m(x))=L(y,f_{m-1}(x)+T(x,\theta_m))=L(r_{m-1},T(x,\theta_m))
\]
其中的\(T(x,\theta)\)需要用CART树去拟合,而\(r_{m-1}\)是上一个学习器的损失的残差。
\[
r_{m-1}=L(y,f_{m-1}(x))
\]
我们举个例子,假设损失函数是平方损失函数:
\[
L(y,f(x))=(y-f(x))^2
\]
则第\(m\)个模型的损失函数
\[
L(y,f_m(x))=L(y,f_{m-1}(x)+T(x,\theta_m))=L(r_{m-1},T(x,\theta_m))=(r_{m-1}-T(x,\theta_m))^2
\]
4. 梯度提升树
前面的提升树利用加法模型和前向算法进行,当损失函数是平方损失或者指数损失的时候,很好推算,但是对于一般的损失函数,就比较难处理。这时候我们可以利用最速下降法来近似,关键是利用了损失函数的负梯度在当前模型的值:
\[
r_{ti} \approx -\bigg[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\bigg]_{f(x) = f_{t-1}\;(x)}
\]
输入:是训练集样本\(T={(x_1,y_1),(x_2,y_2),...(x_N,y_N)}\), 最大迭代次数\(M\), 损失函数\(L\)。
输出:强学习器\(f_M(x)\)
- 初始化弱学习器
\[
f_0(x) = arg min_{c}\sum\limits_{i=1}^{N}L(y_i, c)
\]
- 对迭代轮数\(m=1,2,...M\)有:
- 对样本\(i=1,2,...,N\),计算负梯度\(r_{mi} \approx -\bigg[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\bigg]_{f(x) = f_{t-1}\;(x)}\)
- 利用\((x_i,r_{mi})(i=1,2,..N)\), 拟合一颗CART回归树,得到第t颗回归树,其对应的叶子节点区域为\(Rmj,(j=1,2,...,J)\)。其中\(J\)为回归树t的叶子节点的个数。
- 对叶子区域\(j=1,2,...,J\)计算最佳拟合值\(c_{mj} = arg min_{c}\sum\limits_{x_i \in R_{mj}} L(y_i,f_{m-1}(x_i) +c)\)
- 更新强学习器\(f_{m}(x) = f_{m-1}(x) + \sum\limits_{j=1}^{J}c_{mj}I(x \in R_{mj})\)
- 得到强学习器f(x)的表达式\(f(x) = f_M(x) =f_0(x) + \sum\limits_{m=1}^{M}\sum\limits_{j=1}^{J}c_{mj}I(x \in R_{tj})\)
5. GBDT的正则化
- 和Adaboost类似的正则化项,即步长(learning rate)。
- 正则化的方式是通过子采样比例(subsample)。
- 对于弱学习器即CART回归树进行正则化剪枝。
6. 总结
GBDT也是需要正则化的过程,
最后总结下GBDT的优缺点。
GBDT主要的优点有:
- 可以灵活处理各种类型的数据,包括连续值和离散值。
- 在相对少的调参时间情况下,预测的准确率也可以比较高。这个是相对SVM来说的。
- 使用一些健壮的损失函数,对异常值的鲁棒性非常强。比如 Huber损失函数和Quantile损失函数。
GBDT的主要缺点有:
- 由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行。
5. 集成学习(Ensemble Learning)GBDT的更多相关文章
- 【Supervised Learning】 集成学习Ensemble Learning & Boosting 算法(python实现)
零. Introduction 1.learn over a subset of data choose the subset uniformally randomly (均匀随机地选择子集) app ...
- 笔记︱集成学习Ensemble Learning与树模型、Bagging 和 Boosting
本杂记摘录自文章<开发 | 为什么说集成学习模型是金融风控新的杀手锏?> 基本内容与分类见上述思维导图. . . 一.机器学习元算法 随机森林:决策树+bagging=随机森林 梯度提升树 ...
- 机器学习:集成学习:随机森林.GBDT
集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测 ...
- 集成学习(Ensembling Learning)
集成学习(Ensembling Learning) 标签(空格分隔): 机器学习 Adabost 对于一些弱分类器来说,如何通过组合方法构成一个强分类器.一般的思路是:改变训练数据的概率分布(权值分布 ...
- 集成学习ensemble
集成学习里面在不知道g的情况下边学习边融合有两大派:Bagging和Boosting,每一派都有其代表性算法,这里给出一个大纲. 先来说下Bagging和Boosting之间的相同点:都是不知道g,和 ...
- 集成学习(ensemble method)--基于树模型
bagging方法(自举汇聚法 bootstrap aggregating) boosting分类:最流行的是AdaBoost(adaptive boosting) 随机森林(random fores ...
- 集成算法——Ensemble learning
目的:让机器学习效果更好,单个不行,群殴啊! Bagging:训练多个分类器取平均 Boosting:从弱学习器开始加强,通过加权来进行训练 (加入一棵树,比原来要强) Stacking:聚合多个分类 ...
- 浅谈树模型与集成学习-从决策树到GBDT
引言 神经网络模型,特别是深度神经网络模型,自AlexNet在Imagenet Challenge 2012上的一鸣惊人,无疑是Machine Learning Research上最靓的仔,各种进 ...
- 集成学习的不二法门bagging、boosting和三大法宝<结合策略>平均法,投票法和学习法(stacking)
单个学习器要么容易欠拟合要么容易过拟合,为了获得泛化性能优良的学习器,可以训练多个个体学习器,通过一定的结合策略,最终形成一个强学习器.这种集成多个个体学习器的方法称为集成学习(ensemble le ...
- [白话解析] 通俗解析集成学习之bagging,boosting & 随机森林
[白话解析] 通俗解析集成学习之bagging,boosting & 随机森林 0x00 摘要 本文将尽量使用通俗易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来看,运用感性直觉的思考来 ...
随机推荐
- Vue.js 添加组件
<!DOCTYPE HTML> <html> <head> <title>vue.js hello world</title> <sc ...
- 如果没有 Android 世界会是什么样子?
2005年谷歌从安迪·鲁宾(Andy Rubin)手中收购Android系统,起初安迪·鲁宾(Andy Rubin)只是想为数码相机开发出一个更为先进的系统,所以有了 Android.但是智能手机行业 ...
- Andoird通信之简单聊天ChatApp
Android通信,大体上的逻辑是跟Java上的通信是差不多的,只是因为Android线程不能直接访问UI界面组件,所以在处理的时候有些麻烦,只要是通过Handle处理. 接下来是一个简单地手机聊天A ...
- [Aaronyang] 写给自己的WPF4.5 笔记5[数据绑定三巴掌1/3]
生活总有意外,微笑对待每一件事,无需抱怨--Aaronyang的博客(www.ayjs.net) 博文摘要:数据库下载 教你如何在vs2013中不安装Mssql数据库,使用了Sqlserver Com ...
- AndroidStudio编译错误:Error: null value in entry: blameLogFolder=null
今天写项目的时候,电脑开了个WiFi热点,然后这个热点和window驱动不兼容,有时候会导致电脑重启,重启之后AndroidStudio编译就报错了, Error: null value in ent ...
- 解决虚拟机vmware虚拟机安装64位系统“此主机支持 Intel VT-x,但 Intel VT-x 处于禁用状态”的问题
前言 虚拟机使用的是VMware Workstation,并且首次在虚拟机体验64 位系统.在新建好虚拟机,运行时候就出现了VMware Workstation 的提醒:此主机支持 Intel VT- ...
- 来设置IE兼容模式
来设置IE兼容模式 文件兼容性用于定义让IE如何编译你的网页.此文件解释文件兼容性,如何指定你网站的文件兼容性模式以及如何判断一个网页该使用的文件模式. 前言 为了帮助确保你的网页在所有未来的IE版本 ...
- [转]在windows上实现多个java jdk的共存解决办法
问题背景 公司项目中应用到的jdk环境为1.6,最近在家学习IntelliJ IDEA中sdk多环境配置时,想安装Jdk1.8,作为学习基础.那么问题来了,公司项目扩展不支持jdk1.8,为了既能满足 ...
- [转]JDBC快速入门教程
JDBC是什么? JDBC API是一个Java API,可以访问任何类型表列数据,特别是存储在关系数据库中的数据.JDBC代表Java数据库连接. JDBC库中所包含的API任务通常与数据库使用: ...
- axios 简单常用笔记
简单认知: 1.config.data是POST参数,config.params是GET参数 axios(url, [config]) + qs + application/x-www-form-ur ...