5. 集成学习(Ensemble Learning)GBDT
1. 集成学习(Ensemble Learning)原理
2. 集成学习(Ensemble Learning)Bagging
3. 集成学习(Ensemble Learning)随机森林(Random Forest)
4. 集成学习(Ensemble Learning)Adaboost
5. 集成学习(Ensemble Learning)GBDT
6. 集成学习(Ensemble Learning)算法比较
7. 集成学习(Ensemble Learning)Stacking
1. 前言
如果读了我之前的几篇集成学习的博文,相信读者们已经都对集成学习大部分知识很有了详细的学习。今天我们再来一个提升,就是我们的集大成者GBDT。GBDT在我们的Kaggle的比赛中基本获得了霸主地位,大部分的问题GBDT都能获得异常好的成绩。
2. GBDT原理
GBDT的中文名叫梯度提升树,GBDT也是集成学习Boosting家族的成员,但是却和传统的Adaboost有很大的不同。回顾下Adaboost,我们是利用前一轮迭代弱学习器的误差率来更新训练集的权重,这样一轮轮的迭代下去。GBDT也是迭代,使用了前向分布算法,但是弱学习器限定了只能使用CART回归树模型,同时迭代思路和Adaboost也有所不同。
在GBDT的迭代中,假设我们前一轮迭代得到的强学习器是\(f_{t-1}(x)\), 损失函数是\(L(y,f_{t-1}(x))\),我们本轮迭代的目标是找到一个CART回归树模型的弱学习器\(h_t(x)\),让本轮的损失函数\(L(y,f_t(x)=L(y,f_{t-1}(x)+h_t(x))\)最小。也就是说,本轮迭代找到决策树,要让样本的损失尽量变得更小。即梯度提升树是用CART树去拟合前一个弱模型的损失函数的残差,使得本轮的损失更小。
3. 提升树
回归问题提升树的前向分步算法:
假设第\(m\)个模型是\(f_m(x)\),则有以下公式
\[
f_0(x)=0
\]
\[
f_m(x)=f_{m-1}(x)+T(x,\theta_m)
\]
\[
f_M(x)=\sum_{m=1}^MT(x,\theta_m)
\]
有了模型函数后,我们就得到了损失函数:
\[
L(y,f_m(x))=L(y,f_{m-1}(x)+T(x,\theta_m))=L(r_{m-1},T(x,\theta_m))
\]
其中的\(T(x,\theta)\)需要用CART树去拟合,而\(r_{m-1}\)是上一个学习器的损失的残差。
\[
r_{m-1}=L(y,f_{m-1}(x))
\]
我们举个例子,假设损失函数是平方损失函数:
\[
L(y,f(x))=(y-f(x))^2
\]
则第\(m\)个模型的损失函数
\[
L(y,f_m(x))=L(y,f_{m-1}(x)+T(x,\theta_m))=L(r_{m-1},T(x,\theta_m))=(r_{m-1}-T(x,\theta_m))^2
\]
4. 梯度提升树
前面的提升树利用加法模型和前向算法进行,当损失函数是平方损失或者指数损失的时候,很好推算,但是对于一般的损失函数,就比较难处理。这时候我们可以利用最速下降法来近似,关键是利用了损失函数的负梯度在当前模型的值:
\[
r_{ti} \approx -\bigg[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\bigg]_{f(x) = f_{t-1}\;(x)}
\]
输入:是训练集样本\(T={(x_1,y_1),(x_2,y_2),...(x_N,y_N)}\), 最大迭代次数\(M\), 损失函数\(L\)。
输出:强学习器\(f_M(x)\)
- 初始化弱学习器
\[
f_0(x) = arg min_{c}\sum\limits_{i=1}^{N}L(y_i, c)
\]
- 对迭代轮数\(m=1,2,...M\)有:
- 对样本\(i=1,2,...,N\),计算负梯度\(r_{mi} \approx -\bigg[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\bigg]_{f(x) = f_{t-1}\;(x)}\)
- 利用\((x_i,r_{mi})(i=1,2,..N)\), 拟合一颗CART回归树,得到第t颗回归树,其对应的叶子节点区域为\(Rmj,(j=1,2,...,J)\)。其中\(J\)为回归树t的叶子节点的个数。
- 对叶子区域\(j=1,2,...,J\)计算最佳拟合值\(c_{mj} = arg min_{c}\sum\limits_{x_i \in R_{mj}} L(y_i,f_{m-1}(x_i) +c)\)
- 更新强学习器\(f_{m}(x) = f_{m-1}(x) + \sum\limits_{j=1}^{J}c_{mj}I(x \in R_{mj})\)
- 得到强学习器f(x)的表达式\(f(x) = f_M(x) =f_0(x) + \sum\limits_{m=1}^{M}\sum\limits_{j=1}^{J}c_{mj}I(x \in R_{tj})\)
5. GBDT的正则化
- 和Adaboost类似的正则化项,即步长(learning rate)。
- 正则化的方式是通过子采样比例(subsample)。
- 对于弱学习器即CART回归树进行正则化剪枝。
6. 总结
GBDT也是需要正则化的过程,
最后总结下GBDT的优缺点。
GBDT主要的优点有:
- 可以灵活处理各种类型的数据,包括连续值和离散值。
- 在相对少的调参时间情况下,预测的准确率也可以比较高。这个是相对SVM来说的。
- 使用一些健壮的损失函数,对异常值的鲁棒性非常强。比如 Huber损失函数和Quantile损失函数。
GBDT的主要缺点有:
- 由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行。
5. 集成学习(Ensemble Learning)GBDT的更多相关文章
- 【Supervised Learning】 集成学习Ensemble Learning & Boosting 算法(python实现)
零. Introduction 1.learn over a subset of data choose the subset uniformally randomly (均匀随机地选择子集) app ...
- 笔记︱集成学习Ensemble Learning与树模型、Bagging 和 Boosting
本杂记摘录自文章<开发 | 为什么说集成学习模型是金融风控新的杀手锏?> 基本内容与分类见上述思维导图. . . 一.机器学习元算法 随机森林:决策树+bagging=随机森林 梯度提升树 ...
- 机器学习:集成学习:随机森林.GBDT
集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测 ...
- 集成学习(Ensembling Learning)
集成学习(Ensembling Learning) 标签(空格分隔): 机器学习 Adabost 对于一些弱分类器来说,如何通过组合方法构成一个强分类器.一般的思路是:改变训练数据的概率分布(权值分布 ...
- 集成学习ensemble
集成学习里面在不知道g的情况下边学习边融合有两大派:Bagging和Boosting,每一派都有其代表性算法,这里给出一个大纲. 先来说下Bagging和Boosting之间的相同点:都是不知道g,和 ...
- 集成学习(ensemble method)--基于树模型
bagging方法(自举汇聚法 bootstrap aggregating) boosting分类:最流行的是AdaBoost(adaptive boosting) 随机森林(random fores ...
- 集成算法——Ensemble learning
目的:让机器学习效果更好,单个不行,群殴啊! Bagging:训练多个分类器取平均 Boosting:从弱学习器开始加强,通过加权来进行训练 (加入一棵树,比原来要强) Stacking:聚合多个分类 ...
- 浅谈树模型与集成学习-从决策树到GBDT
引言 神经网络模型,特别是深度神经网络模型,自AlexNet在Imagenet Challenge 2012上的一鸣惊人,无疑是Machine Learning Research上最靓的仔,各种进 ...
- 集成学习的不二法门bagging、boosting和三大法宝<结合策略>平均法,投票法和学习法(stacking)
单个学习器要么容易欠拟合要么容易过拟合,为了获得泛化性能优良的学习器,可以训练多个个体学习器,通过一定的结合策略,最终形成一个强学习器.这种集成多个个体学习器的方法称为集成学习(ensemble le ...
- [白话解析] 通俗解析集成学习之bagging,boosting & 随机森林
[白话解析] 通俗解析集成学习之bagging,boosting & 随机森林 0x00 摘要 本文将尽量使用通俗易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来看,运用感性直觉的思考来 ...
随机推荐
- Java后端,应该日常翻看的中文技术网站
参考链接:http://calvin1978.blogcn.com/articles/dailysites.html
- 日志收集之--将Kafka数据导入elasticsearch
最近需要搭建一套日志监控平台,结合系统本身的特性总结一句话也就是:需要将Kafka中的数据导入到elasticsearch中.那么如何将Kafka中的数据导入到elasticsearch中去呢,总结起 ...
- android在不加载图片的前提下获得图片的宽高
public static int[] getImageWidthHeight(String path){ BitmapFactory.Options options = new BitmapFact ...
- TortoiseSVN 命令 (命令行执行工具)
TortoiseSVN是一个GUI客户端,这个自动化指导为你展示了让TortoiseSVN对话框显示并收集客户输入,如果你希望编写不需要输入的脚本,你应该使用官方的Subversion命令行客户端. ...
- 1142 - show view command denied to user
原因是没有给test用户授予"show_view_priv"权限 mysql> SELECT * FROM mysql.user WHERE User = 'test' an ...
- poj3041(最小顶点覆盖)
链接:点击打开链接 题意:N*N的矩阵中有一些点代表陨石.每次仅仅能消灭一行或一列连,问须要多少次才干所有消灭 代码: #include <map> #include <queue& ...
- (面试题)如何查找Oracle数据库中的重复记录
今天做了个面试题:查找Oracle数据库中的重复记录,下面详细介绍其他方法(参考其他资料) 本文介绍了几种快速查找ORACLE数据库中的重复记录的方法. 下面以表table_name为例,介绍三种不同 ...
- 【转载并整理】javaweb单点登录
很好的一篇,讲述原理的文章: http://www.importnew.com/22863.html https://www.cnblogs.com/Leo_wl/p/6111623.html 京东s ...
- 基于tornado的爬虫并发问题
tornado中的coroutine是python中真正意义上的协程,与python3中的asyncio几乎是完全一样的,而且两者之间的future是可以相互转换的,tornado中有与asyncio ...
- jQueryWEUI自定义对话框-带有textarea
jQueryWEUI 示例下载 在jQueryWEUI中提供了很多类型的对话框, 可以去访问看一下. 今天记录的则是,自己定义的一个带有文本域的对话框,这样,可以不通过调转页面,实现一些信息的提交. ...