1.mini-batch梯度下降

在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵:



当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练样本涵盖,速度也会较快。但当数据量急剧增大,达到百万甚至更大的数量级时,组成的矩阵将极其庞大,直接对这么大的的数据作梯度下降,可想而知速度是快不起来的。故这里将训练样本分割成较小的训练子集,子集就叫mini-batch。例如:训练样本数量m=500万,设置mini-batch=1000,则可以将训练样本划分为5000个mini-batch,每个mini-batch中含有1000个样本数据,当然,输出矩阵也要做同样的划分。这张图可以直观的理解:





在实际的训练中,会通过循环来遍历所有的mini-batch,对每一个mini-batch都会做和原来一样的步骤,即:前向传播、计算损失函数、反向传播、更新参数。







这张图可以大致反应两种梯度下降方法其损失函数的变化过程:在batch梯度下降中,由于每次训练迭代都是遍历的整个训练集,故损失函数的曲线应是一个较为平滑的下降过程,如出现明显的抖动,很大程度可能是学习率α过大。但在mini-batch梯度下降中可以看到,并不是每次迭代其损失函数都是下降的,这是因为训练集不完整的原因。但总体趋势还是下降的,抖动程度取决于设置的mini-batch的大小。

综合来说,如果训练集较小,那么直接使用batch梯度下降法,可以快速的处理整个数据集,一般来说是少于2000个样本。如果训练集再大一点,就可以考虑使用mini-batch梯度下降法,一般mini-batch的大小为64 - 512(考虑到电脑内存,设置为2的n次方,运算速度会快些)。另外,当mini-batch设置为1时,又叫做随机梯度下降法

2.指数加权平均

举个例子:下图是一年内某地气温的变化情况:



可以看到数据点比较的杂乱,但是大体趋势还是存在的。为了更好的表现气温变化情况,这里做一下这样的处理:







我们看到这个高值的β=0.98得到的曲线要平坦一些,是因为你多平均了几天的温度.所以波动更小,更加平坦.缺点是曲线向右移动,这时因为现在平均的温度值更多,所以会出现一定的延迟.对于β=0.98这个值的理解在于有0.98的权重给了原先的值,只有0.02的权重给了当日的值.我们现在将β=0.5作图运行后得到黄线,由于仅平均了两天的温度,平均的数据太少,所以得到的曲线有更多的噪声,更有可能出现异常值,但是这个曲线能更快的适应温度变化,所以指数加权平均数经常被使用. 在统计学中,它常被称为指数加权移动平均值

3.动量梯度下降

动量梯度下降(Gradient Descent with Momentum)是计算梯度的指数加权平均数,并利用该值来更新参数值。其中的动量衰减参数β一般取0.9进行一般的梯度下降将会得到图中的蓝色曲线,而使用Momentum梯度下降时,通过累加减少了抵达最小值路径上的摆动,加快了收敛,得到图中红色的曲线。当前后梯度方向一致时,Momentum梯度下降能够加速学习;前后梯度方向不一致时,Momentum梯度下降能够抑制震荡。





进行一般的梯度下降将会得到图中的蓝色曲线,由于存在上下波动,减缓了梯度下降的速度,因此只能使用一个较小的学习率进行迭代。如果用较大的学习率,结果可能会像紫色曲线一样偏离函数的范围。而使用动量梯度下降时,通过累加过去的梯度值来减少抵达最小值路径上的波动,加速了收敛,因此在横轴方向下降得更快,从而得到图中红色的曲线。当前后梯度方向一致时,动量梯度下降能够加速学习;而前后梯度方向不一致时,动量梯度下降能够抑制震荡。另外,在 10 次迭代之后,移动平均已经不再是一个具有偏差的预测。因此实际在使用梯度下降法或者动量梯度下降法时,不会同时进行偏差修正。

  • 动量梯度下降法的形象解释

    将成本函数想象为一个碗状,从顶部开始运动的小球向下滚,其中 dw,db 想象成球的加速度;而 vdw、vdb 相当于速度。小球在向下滚动的过程中,因为加速度的存在速度会变快,但是由于 β 的存在,其值小于 1,可以认为是摩擦力,所以球不会无限加速下去。最后要说一点,如果你查阅了动量梯度下降法相关资料,你经常会看到 1-β 被删除了,即

    vdW[l]=βvdW[l]+dW[l]

    vdb[l]=βvdb[l]+db[l]

    所以V_dw缩小了1-β倍,所以你要用梯度下降最新值的话,a也要相应变化。实际上这2种方法效果都不错,只会影响到学习率a的最佳值。

4.Adagrad

Adagrad在每一个更新步骤中对于每一个模型参数Wi使用不同的学习速率ηi,



可以看到,式中学习率会除以该权值历史所有梯度的平方根,由于梯度会累加得越来越大,也就可以达到衰减学习率的效果。 其中,e是一个平滑参数,为了使得分母不为0(通常e=1e−8),另外,如果分母不开根号,算法性能会很糟糕。其优点很明显,可以使得学习率越来越小,而且每个权值根据其梯度大小不同可以获得自适应的学习率调整。其缺点在于需要计算参数梯度序列平方和,并且学习速率趋势会较快衰减达到一个非常小的值

5.RMSprop

为了缓解Adagrad学习率衰减过快,首先当然就是想到降低分子里的平方和项,RMSprop是通过将平方和变为加权平方和.也就是说平方和项随着时间不断衰减,过远的梯度将不影响学习率。

RMSprop算法,全称是root mean square prop算法,它也可以加速梯度下降,我们来看看它是如何运作的。你们知道了动量(Momentum)可以加快梯度下降,还有一个叫做RMSprop的算法,全称是root mean square prop算法,它也可以加速梯度下降,我们来看看它是如何运作的。我们来理解一下其原理。我们希望W学习速度快,而在垂直方向,也就是例子中的b方向,我们希望减缓纵轴上的摆动,所以有了和S_dw, S_db .我们希望S_dw会相对较小,所以我们要除以一个较小的数,而希望S_db又较大,所以这里我们要除以较大的数字,这样就可以减缓纵轴上的变化。因为函数的倾斜程度,在纵轴上,也就是b方向上要大于在横轴上,也就是W方向上。db的平方较大,所以S_db也会较大,而相比之下,dw会小一些,亦或平方会小一些,因此S_dw会小一些,结果就是纵轴上的更新要被一个较大的数相除,就能消除摆动,而水平方向的更新则被较小的数相除。RMSprop的影响就是你的更新最后会变成这样(绿色线),纵轴方向上摆动较小,而横轴方向继续推进。还有个影响就是,你可以用一个更大学习率,然后加快学习,而无须在纵轴上垂直方向偏离。



6.Adam优化

Adam 优化算法(Adaptive Moment Estimation,自适应矩估计)基本上就是将 Momentum 和 RMSProp 算法结合在一起,通常有超越二者单独时的效果。在深度学习的历史上,包括许多知名研究者在内,提出了优化算法,并很好地解决了一些问题,但随后这些优化算法被指出并不能一般化,并不适用于多种神经网络。

RMSprop以及Adam优化算法,就是少有的经受住人们考验的两种算法,已被证明适用于不同的深度学习结构,这个算法我会毫不犹豫地推荐给你,因为很多人都试过,并且用它很好地解决了许多问题。

Adam 优化算法有很多的超参数,其中

学习率 α:需要尝试一系列的值,来寻找比较合适的;

β1:常用的缺省值为 0.9;

β2:Adam 算法的作者建议为 0.999;

ϵ:不重要,不会影响算法表现,Adam 算法的作者建议为 10−8;

β1、β2、ϵ 通常不需要调试。

7.学习率衰减

为什么要计算学习率衰减?

假设你要使用mini-batch梯度下降法,mini-batch数量不大,大概64或者128个样本,在迭代过程中会有噪音(蓝色线),下降朝向这里的最小值,但是不会精确地收敛,所以你的算法最后在附近摆动,并不会真正收敛,因为你用的α是固定值,不同的mini-batch中有噪音。





8.局部最优的问题

在低纬度的情形下,我们可能会想象到一个Cost function 如左图所示,存在一些局部最小值点,在初始化参数的时候,如果初始值选取的不得当,会存在陷入局部最优点的可能性。但是,如果我们建立一个神经网络,通常梯度为零的点,并不是如左图中的局部最优点,而是右图中的鞍点(叫鞍点是因为其形状像马鞍的形状)。



在一个具有高维度空间的函数中,如果梯度为 0,那么在每个方向,Cost function 可能是凸函数,也有可能是凹函数。但如果参数维度为 2万维,想要得到局部最优解,那么所有维度均需要是凹函数,其概率为2^−20000,可能性非常的小。也就是说,在低纬度中的局部最优点的情况,并不适用于高纬度,我们在梯度为 0 的点更有可能是鞍点。

在高纬度的情况下:

  • 几乎不可能陷入局部最小值点;
  • 处于鞍点的停滞区会减缓学习过程,利用如 Adam 等算法进行改善。

参考文献

[1] Optimization Algorithms优化算法

[2] 改善深层神经网络(吴恩达)_优化算法

[3] 动量梯度下降法(Gradient descent with Momentum)-吴恩达 深度学习 course2 2.6笔记

[4] 局部最优的问题

[5] 卷积神经网络(五):SGD、adagrad与RMSprop,梯度下降法总结

改善深层神经网络_优化算法_mini-batch梯度下降、指数加权平均、动量梯度下降、RMSprop、Adam优化、学习率衰减的更多相关文章

  1. [DeeplearningAI笔记]改善深层神经网络_优化算法2.3_2.5_带修正偏差的指数加权平均

    Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.3 指数加权平均 举个例子,对于图中英国的温度数据计算移动平均值或者说是移动平均值( ...

  2. [DeeplearningAI笔记]改善深层神经网络_优化算法2.6_2.9Momentum/RMSprop/Adam优化算法

    Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 动量梯度下降法(Momentum) 另一种成本函数优化算法,优化速度一般快于标准 ...

  3. [DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.9_归一化normalization

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9 归一化Normaliation 训练神经网络,其中一个加速训练的方法就是归一化输入(normalize inputs). 假设我们有一个 ...

  4. [DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.10_1.12/梯度消失/梯度爆炸/权重初始化

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10 梯度消失和梯度爆炸 当训练神经网络,尤其是深度神经网络时,经常会出现的问题是梯度消失或者梯度爆炸,也就是说当你训练深度网络时,导数或坡 ...

  5. Coursera Deep Learning笔记 改善深层神经网络:超参数调试 Batch归一化 Softmax

    摘抄:https://xienaoban.github.io/posts/2106.html 1. 调试(Tuning) 超参数 取值 #学习速率:\(\alpha\) Momentum:\(\bet ...

  6. [DeeplearningAI笔记]改善深层神经网络_优化算法2.1_2.2_mini-batch梯度下降法

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.1 mini-batch gradient descent mini-batch梯度下降法 我们将训练数据组合到一个大的矩阵中 \(X=\b ...

  7. 《深度学习-改善深层神经网络》-第二周-优化算法-Andrew Ng

    目录 1. Mini-batch gradient descent 1.1 算法原理 1.2 进一步理解Mini-batch gradient descent 1.3 TensorFlow中的梯度下降 ...

  8. deeplearning.ai 改善深层神经网络 week2 优化算法 听课笔记

    这一周的主题是优化算法. 1.  Mini-batch: 上一门课讨论的向量化的目的是去掉for循环加速优化计算,X = [x(1) x(2) x(3) ... x(m)],X的每一个列向量x(i)是 ...

  9. deeplearning.ai 改善深层神经网络 week2 优化算法

    这一周的主题是优化算法. 1.  Mini-batch: 上一门课讨论的向量化的目的是去掉for循环加速优化计算,X = [x(1) x(2) x(3) ... x(m)],X的每一个列向量x(i)是 ...

随机推荐

  1. 剑指offer——49

    丑数 因子只含2,3,5的数称为丑数. 怎么求第K大的丑数呢.K可以为10^7 最简单的做法是,对每个数判断是否为丑数. 复杂度为O( n * log(n) ),理论上是不行的. uglys[i] 来 ...

  2. css3整理--border-radius

    1.border-radius 标准: border-top-left-radius: x y // 左上角,x 圆角水平半径, y 圆角垂直半径 border-top-right-radius:x ...

  3. Makefile伪目标

    https://www.zybuluo.com/lishuhuakai/note/210174 本节我们讨论一个Makefile中的一个重要的特殊目标:伪目标. 伪目标是这样一个目标:它不代表一个真正 ...

  4. 安卓APP动态调试-IDA实用攻略

    0x00 前言 随着智能手机的普及,移动APP已经贯穿到人们生活的各个领域.越来越多的人甚至已经对这些APP应用产生了依赖,包括手机QQ.游戏.导航地图.微博.微信.手机支付等等,尤其2015年春节期 ...

  5. GTID与MHA

    MHA 基于binlog文件位置的复制 * Phase 3: Master Recovery Phase.. * Phase 3.1: Getting Latest Slaves Phase.. La ...

  6. memcached stats 命令

    STAT pid 1552 STAT uptime 3792 STAT time 1262517674 STAT version 1.2.6 STAT pointer_size 32 STAT cur ...

  7. MYSQL中GROUP BY不包含所有的非聚合字段时的注意事项

    本文导读:在MYSQL中使用GROUP BY分组时,我们可以select 多个非聚合字段,但是这些字段不在GROUP BY中,这样的SQL查询在SQL SERVER.ORACLE中是不合理的,且会报错 ...

  8. HTTP与HTTPS对访问速度(性能)的影响【转】

    1 前言 HTTPS 在保护用户隐私,防止流量劫持方面发挥着非常关键的作用,但与此同时,HTTPS 也会降低用户访问速度,增加网站服务器的计算资源消耗. 本文主要介绍 https 对用户体验的影响. ...

  9. TOP100summit 2017:亚马逊Echo音箱能够语音识人,华人工程师揭秘设计原理

      本文编辑:Cynthia 2017年,人工智能的消费产品落地聚焦在了智能音箱上,谷歌.亚马逊纷纷推出智能音箱产品,国内的阿里巴巴推出天猫精灵,小米推出小米AI音箱.智能音箱通过语音可以发出指令,未 ...

  10. 【转】(翻译)从底层了解ASP.NET体系结构

    原文地址:http://www.cnblogs.com/rijing2004/archive/2007/09/14/howaspnetwork.html 前言关于ASP.NET的底层的工作机制,最近园 ...