Atcoder Tenka1 Programmer Contest 2019 E - Polynomial Divisors
题意:
给出一个多项式,问有多少个质数\(p\)使得\(p\;|\;f(x)\),不管\(x\)取何值
思路:
首先所有系数的\(gcd\)的质因子都是可以的。
再考虑一个结论,如果在\(\bmod p\)意义下,多项式中存在\((x^p - x)\)这个因式,那么这个质数\(p\)也是可以的
显然\(p \leq n\),那么我们只要枚举每个\(\leq n\)的质数,做模\(p\)意义下的多项式除法,判断余数是否为\(0\)即可。
证明:
- 充分性:考虑\(p\;|\;f(x)\),即\(f(x) = kp\),即在\(\bmod p\)意义下,\(f(x) = 0\),根据欧拉定理,分两种情况讨论
- \(x < p\),又因为\(p\)是质数,那么显然有\((x, p) = 1\),那么\(x^{p - 1} \equiv 1 \pmod p\),有\(x^{p} - x \equiv 0 \pmod p\)
- \(x \geq p\),如果\(gcd(x, p)\)不为\(1\),那么显然有\(gcd(x, p) = p\),那么已经满足\(p\;|\;f(x)\),否则套用欧拉定理
- 必要性:如果\(p\;|\;f(x)\),那么\(0, 1, \cdots, p - 1\)必然为\(f(x)\)的一个根,那么\(f(x)\)有因式\(x(x - 1)(x - 2)\cdots(x - (p - 1))\)。我们考虑这个因式与\(x^p - x\)是等价的,如果不是等价的,那么作差之后,最高次变为\(p - 1\),而根的个数却有\(p\)个,显然矛盾
#include <bits/stdc++.h>
using namespace std;
#define N 10010
int n, a[N], b[N];
bool isprime(int x) {
for (int i = 2; 1ll * i * i <= x; ++i) {
if (x % i == 0) {
return false;
}
}
return true;
}
int gcd(int a, int b) {
return b ? gcd(b, a % b) : a;
}
bool ok(int p) {
if (a[0] % p) {
return false;
}
for (int i = 0; i <= n; ++i) {
b[i] = a[i];
}
for (int i = n; i >= p - 1; --i) {
(b[i - (p - 1)] += b[i]) %= p;
b[i] = 0;
}
for (int i = 0; i <= n; ++i) {
if (b[i] % p) {
return false;
}
}
return true;
}
int main() {
while (scanf("%d", &n) != EOF) {
int G = 0;
for (int i = 0; i <= n; ++i) {
scanf("%d", a + i);
G = gcd(G, abs(a[i]));
}
reverse(a, a + 1 + n);
vector <int> res;
for (int i = 2; 1ll * i * i <= G; ++i) {
if (G % i == 0) {
res.push_back(i);
while (G % i == 0) {
G /= i;
}
}
}
if (G > 1) {
res.push_back(G);
}
for (int i = 2; i <= n; ++i) {
if (isprime(i) && ok(i)) {
res.push_back(i);
}
}
sort(res.begin(), res.end());
res.erase(unique(res.begin(), res.end()), res.end());
for (auto it : res) {
printf("%d\n", it);
}
// puts("------------");
}
return 0;
}
Atcoder Tenka1 Programmer Contest 2019 E - Polynomial Divisors的更多相关文章
- Atcoder Tenka1 Programmer Contest 2019 题解
link 题面真简洁 qaq C Stones 最终一定是连续一段 . 加上连续一段 # .直接枚举断点记录前缀和统计即可. #include<bits/stdc++.h> #define ...
- Atcoder Tenka1 Programmer Contest 2019题解
传送门 \(C\ Stones\) 最后肯定形如左边一段白+右边一段黑,枚举一下中间的断点,预处理一下前缀和就可以了 int main(){ // freopen("testdata.in& ...
- Atcoder Tenka1 Programmer Contest 2019
C 签到题,f[i][0/1]表示以i结尾最后一个为白/黑的最小值,转移显然. #include<bits/stdc++.h> using namespace std; ; ]; char ...
- Atcoder Tenka1 Programmer Contest 2019 D Three Colors
题意: 有\(n\)个石头,每个石头有权值,可以给它们染'R', 'G', 'B'三种颜色,如下定义一种染色方案为合法方案: 所有石头都染上了一种颜色 令\(R, G, B\)为染了'R', 染了'G ...
- 【AtCoder】Tenka1 Programmer Contest 2019
Tenka1 Programmer Contest 2019 C - Stones 题面大意:有一个01序列,改变一个位置上的值花费1,问变成没有0在1右边的序列花费最少多少 直接枚举前i个都变成0即 ...
- Atcoder Tenka1 Programmer Contest D: IntegerotS 【思维题,位运算】
http://tenka1-2017.contest.atcoder.jp/tasks/tenka1_2017_d 给定N,K和A1...AN,B1...BN,选取若干个Ai使它们的或运算值小于等于K ...
- Atcoder Tenka1 Programmer Contest C C - 4/N
http://tenka1-2017.contest.atcoder.jp/tasks/tenka1_2017_c 我怀疑我是不是智障.... 本来一直的想法是能不能构造出答案,把N按奇偶分,偶数好办 ...
- Tenka1 Programmer Contest 2019
C:即要使前一部分为白色后一部分为黑色,枚举分割点前缀和计算答案取min即可. #include<bits/stdc++.h> using namespace std; #define l ...
- Tenka1 Programmer Contest 2019 D - Three Colors
Three Colors 思路:dp 设sum为所有边的总和 不能组成三角形的情况:某条边长度>=ceil(sum/2),可以用dp求出这种情况的方案数,然后用总方案数减去就可以求出答案. 注意 ...
随机推荐
- 虚拟机VMware怎么完全卸载干净,如何彻底卸载VMware虚拟机
亲测好使. 1.禁用VM虚拟机服务 首先,需要停止虚拟机VMware相关服务.按下快捷键WIN+R,打开windows运行对话框,输入[services.msc],点击确定.如下图. 在服务管理中,找 ...
- iOS property中的strong 、weak、copy 、assign 、retain 、unsafe_unretained 与autoreleasing区别和作用详解
iOS5中加入了新知识,就是ARC,其实我并不是很喜欢它,因为习惯了自己管理内存.但是学习还是很有必要的. 在iOS开发过程中,属性的定义往往与retain, assign, copy有关,我想大家都 ...
- Java 制作证书(Windows 和Linux)
一.Windows数字证书 1. 生成数字证书 1.1 进入[%JAVA_HOME%]路径下 cd D:\Program Files\Java\jdk1.8.0_131 1.2 生成证书.一些命令中红 ...
- POJ 1964&HDU 1505&HOJ 1644 City Game(最大0,1子矩阵和总结)
最大01子矩阵和,就是一个矩阵的元素不是0就是1,然后求最大的子矩阵,子矩阵里的元素都是相同的. 这个题目,三个oj有不同的要求,hoj的要求是5s,poj是3秒,hdu是1秒.不同的要求就对应不同的 ...
- 51nod 1042数字0-9的数量
1042 数字0-9的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 收藏 关注 给出一段区间a-b,统计这个区间内0-9出现的次数. 比如 10-19 ...
- slam学习资源
从零开始学slam: http://blog.csdn.net/akunainiannian/article/details/45363731 史上最全的SLAM学习资料收集 http://www. ...
- HDU 2037 - 今年暑假不AC - [经典 选择不相交区间 问题]
是一道很经典的选择不相交区间的问题. 关于选择不相交区间,可以参考刘汝佳.也可以参考:http://blog.csdn.net/dgq8211/article/details/7534488 以及模板 ...
- Codeforces Round #435 (Div. 2)
A. Mahmoud and Ehab and the MEX 题目链接:http://codeforces.com/contest/862/problem/A 题目意思:现在一个数列中有n个数,每个 ...
- MySQL 重做日志文件
一.innodb log的基础知识 · innodb log顾名思义:即innodb存储引擎产生的日志,也可以称为重做日志文件,默认在innodb_data_home_dir下面有两个文件ib_log ...
- 选择排序之python
选择排序( Selection sort) 1.算法描述: 通过n-i次关键字之间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录进行交换. 对尚未完成排 ...