Background 

Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed
on which all streets can carry the weight. 

Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know. 

Problem 

You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's
place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers
specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer.
Terminate the output for the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4

刚开始的思路是把每条边的权值处理一下 用1000005-w作为权值,然后求最短路 再求路径上的最小的那个权值

但是实际上每一次都要尽量找最大的那个权值 而不是让和最大

所以正确的做法是改变一下松弛的条件【最短路题目的核心】

然而还是不太清楚要怎么改 参考了一下题解

dijkstra 和 sfpa都写了下

还有就是 最短路的题目要注意初始化

这道题用cin会T

代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<map>
#include<cstring>
#include<queue>
#include<stack>
#define inf 0x3f3f3f3f using namespace std; const int maxn = 1005;
int t, n, m;
bool vis[maxn];
int p[maxn][maxn], d[maxn]; /*void dijkstra(int sec)
{
int mmax, max_num;
for(int i = 1; i <= n; i++ ){
vis[i] = false;
d[i] = p[sec][i];
}
vis[sec] = true;
d[sec] = 0;
for(int i = 1; i < n; i++){
mmax = -inf;
for(int j = 1; j <= n; j++){
if(!vis[j] && d[j] > mmax){
mmax = d[j];
max_num = j;
}
}
vis[max_num] = 1;
for(int j = 1; j <= n; j++){
if(!vis[j] && d[j] < min(p[max_num][j], d[max_num])){
d[j] = min(p[max_num][j], d[max_num]);
}
}
}
}*/ void spfa(int sec)
{
queue <int> q;
for(int i = 1; i <= n; i++){
d[i] = -1;
vis[i] = false;
} d[sec] = inf;
vis[sec] = true;
q.push(sec);
while(!q.empty()){
int v = q.front();q.pop();
vis[v] = false;
for(int i = 1; i <= n; i++){
int t = min(d[v], p[v][i]);
if(d[i] < t){
d[i] = t;
if(!vis[i]){
vis[i] = true;
q.push(i);
}
}
}
}
} int main()
{
cin>>t;
for(int cas = 1; cas <= t; cas++){
memset(p, 0, sizeof(p));
scanf("%d%d",&n,&m);
for(int i = 0; i < m; i++){
int a, b, c;
scanf("%d%d%d",&a,&b,&c);
p[a][b] = c;
p[b][a] = c;
}
spfa(1); cout<<"Scenario #"<<cas<<":\n";
cout<<d[n]<<endl<<endl;
} return 0;
}

dijkstra的思路:

做n-1次遍历 每次都找还没访问的节点中d[]最大的那个节点j【起点到这个节点的路径中 最小权值的边 比起点到其他节点的路径中最小权值的边的权值要大】

遍历这个结点的邻接点,做松弛操作

如果这个邻接点 i 没有被访问过 如果他此时的d比   j 的 d 和 j 到 i 的边的权值的最小值要小   那么就要更新 i 的d【让起点到 i 的路径经过 j】

spfa的思路:

设置一个队列 将起点加入队列 每次从队列中取出队头    更新剩余结点

松弛条件和dijkstra类似

给边权值初始化为0, 这样他的权值比所有的d都要小, 也就不会赋值给任何的d了

POJ1797 Heavy Transpotation的更多相关文章

  1. POJ--1797 Heavy Transportation (最短路)

    题目电波: POJ--1797 Heavy Transportation n点m条边, 求1到n最短边最大的路径的最短边长度 改进dijikstra,dist[i]数组保存源点到i点的最短边最大的路径 ...

  2. POJ1797 Heavy Transportation 【Dijkstra】

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 21037   Accepted:  ...

  3. (Dijkstra) POJ1797 Heavy Transportation

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 53170   Accepted:  ...

  4. POJ1797 Heavy Transportation —— 最短路变形

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  5. POJ1797 Heavy Transportation (堆优化的Dijkstra变形)

    Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand bus ...

  6. POJ1797 Heavy Transportation(SPFA)

    题目要求1到n点的最大容量的增广路. 听说是最短路求的,然后乱搞就A了.. 大概能从Bellman-Ford的思想,dk[u]表示从源点出发经过最多k条边到达u点的最短路,上理解正确性. #inclu ...

  7. poj1797 - Heavy Transportation(最大边,最短路变形spfa)

    题目大意: 给你以T, 代表T组测试数据,一个n代表有n个点, 一个m代表有m条边, 每条边有三个参数,a,b,c表示从a到b的这条路上最大的承受重量是c, 让你找出一条线路,要求出在这条线路上的最小 ...

  8. poj1797 Heavy Transportation Dijkstra算法的简单应用

    题目链接:http://poj.org/problem?id=1797 题目就是求所有可达路径的其中的最小值边权的最大值 即对于每一条能够到达的路径,其必然有其最小的承载(其实也就是他们自身的最大的承 ...

  9. POJ1797 Heavy Transportation

    解题思路:典型的Kruskal,不能用floyed(会超时),上代码: #include<cstdio> #include<cstring> #include<algor ...

随机推荐

  1. [RN] 04 - React Navigation

    react-navigation和react-router的对比: 支持的平台: react-navigation: react-native react-router: react-native.r ...

  2. Windows 7 无密码文件共享

    Windows7中创建无密码的文件共享的几个步骤: 在“控制面板\所有控制面板项\网络和共享中心\高级共享设置”开启“关闭密码保护共享”和“启用文件和打印机共享”.关闭密码保护共享的操作会启用Gues ...

  3. PDF XSS

    漏洞测试: 下面,我们介绍如何把 JavaScript 嵌入到 PDF 文档之中.我使用的是迅捷 PDF 编辑器未注册版本 1.启动迅捷 PDF 编辑器打开一个 PDF 文件,或者使用“创建 PDF ...

  4. Websphere安装配置与项目部署

    0x01 下载安装 1.在IBM官网下载安装包 打开下载地址,需注册账户,登录后,选择Windows 64-bit下载 2.解压缩,运行install.exe文件 3.输入刚才注册的用户名和密码,并输 ...

  5. OSG3.4编译FFMPEG插件

    0.加入你要读a.mp4,那个正确的写法是osg::Image* image = osgDB::readImageFile("a.mp4.ffmpeg"); 1.在github上下 ...

  6. [Android] Nexus 7 二代连接 Windows 7

    Android 设备的三大 USB 连接模式 MTP:Media Transfer Protocol - 媒体传输协议,Windows 下最常见的连接模式,是微软一种可以管理便携存储设备的协议.MTP ...

  7. 基于Elasticsearch 5.4.3的商品搜索系统

    源码已提交至http://github.com

  8. 在wepy里面使用redux

    wepy 框架本身是支持 Redux 的,我们在构建项目的时候,将 是否安装 Redux 选择 y 就好了,会自动安装依赖,运行项目后看官方给的 demo 确实是可以做到的,但是官方文档里却对这一块只 ...

  9. 随心所欲玩复制 详解robocopy

    说实话,Windows系统自带的复制功能不仅功能简单,而且定制性也不强,每每在对大量文件进行复制.移动.备份时,总少不了繁杂往复的操作.不过幸好,微软意识到了这一点,为我们提供了一款很强力的复制备份工 ...

  10. jQuery缓存机制(三)

    缓存机制提供的入口有: $.data([key],[value]) // 存取数据 $.hasData(elem) // 是否有数据 $.removeData([key]) // 删除数据 $.acc ...