R语言利器之ddply和aggregate
ddply和aggregate是两个用来整合数据的功能强大的函数。
aggregate(x, ...)
关于aggregate()函数的使用在《R语言实战》中P105有简单描述,这里重新说一下。此函数主要有一下几种用法:
## Default S3 method: aggregate(x, ...) ## S3 method for class 'data.frame' aggregate(x, by, FUN, ..., simplify = TRUE, drop = TRUE) ## S3 method for class 'formula' aggregate(formula, data, FUN, ...,subset, na.action = na.omit) ## S3 method for class 'ts' aggregate(x, nfrequency = 1, FUN = sum, ndeltat = 1,ts.eps = getOption("ts.eps"), ...)
例:
attach(mtcars) aggdata <-aggregate(mtcars, by=list(cyl,gear), FUN=mean, na.rm=TRUE) aggdata Group.1 Group.2 mpg cyl disp hp drat wt qsec vs am gear carb 1 4 3 21.500 4 120.1000 97.0000 3.700000 2.465000 20.0100 1.0 0.00 3 1.000000 2 6 3 19.750 6 241.5000 107.5000 2.920000 3.337500 19.8300 1.0 0.00 3 1.000000 3 8 3 15.050 8 357.6167 194.1667 3.120833 4.104083 17.1425 0.0 0.00 3 3.083333 4 4 4 26.925 4 102.6250 76.0000 4.110000 2.378125 19.6125 1.0 0.75 4 1.500000 5 6 4 19.750 6 163.8000 116.5000 3.910000 3.093750 17.6700 0.5 0.50 4 4.000000 6 4 5 28.200 4 107.7000 102.0000 4.100000 1.826500 16.8000 0.5 1.00 5 2.000000 7 6 5 19.700 6 145.0000 175.0000 3.620000 2.770000 15.5000 0.0 1.00 5 6.000000 8 8 5 15.400 8 326.0000 299.5000 3.880000 3.370000 14.5500 0.0 1.00 5 6.000000
得到数据框aggdata,其中的Group.1和Group.2的列名可以指定,只需第二行写成:
aggdata <-aggregate(mtcars, by=list(Group.cyl=cyl, Group.gears=gear),FUN=mean, na.rm=TRUE)
即可。
注意:在使用aggregate()函数的时候, by中的变量必须在一个列表中(即使只有一个变量) 。 指定的函数FUN可为任意的内建或自编函数 。
其他的一些例子:
## Compute the averages for the variables in 'state.x77', grouped ## according to the region (Northeast, South, North Central, West) that ## each state belongs to. aggregate(state.x77, list(Region = state.region), mean) ## Compute the averages according to region and the occurrence of more ## than 130 days of frost. aggregate(state.x77, list(Region = state.region,Cold = state.x77[,"Frost"] > 130), mean) ## (Note that no state in 'South' is THAT cold.) ## example with character variables and NAs testDF <- data.frame(v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9), v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99) ) by1 <- c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12) by2 <- c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA) aggregate(x = testDF, by = list(by1, by2), FUN = "mean") # and if you want to treat NAs as a group fby1 <- factor(by1, exclude = "") fby2 <- factor(by2, exclude = "") aggregate(x = testDF, by = list(fby1, fby2), FUN = "mean") ## Formulas, one ~ one, one ~ many, many ~ one, and many ~ many: aggregate(weight ~ feed, data = chickwts, mean) aggregate(breaks ~ wool + tension, data = warpbreaks, mean) aggregate(cbind(Ozone, Temp) ~ Month, data = airquality, mean) aggregate(cbind(ncases, ncontrols) ~ alcgp + tobgp, data = esoph, sum) ## Dot notation: aggregate(. ~ Species, data = iris, mean) aggregate(len ~ ., data = ToothGrowth, mean) ## Often followed by xtabs(): ag <- aggregate(len ~ ., data = ToothGrowth, mean) xtabs(len ~ ., data = ag) ## Compute the average annual approval ratings for American presidents. aggregate(presidents, nfrequency = 1, FUN = mean) ## Give the summer less weight. aggregate(presidents, nfrequency = 1, FUN = weighted.mean, w = c(1, 1, 0.5, 1))
ddply
下面是ddply函数的一般用法:
ddply(.data, .variables, .fun = NULL, ..., .progress = "none",.inform = FALSE, .drop = TRUE, .parallel = FALSE, .paropts = NULL)
例:
# Summarize a dataset by two variables dfx <- data.frame( group = c(rep('A', 8), rep('B', 15), rep('C', 6)), sex = sample(c("M", "F"), size = 29, replace = TRUE), age = runif(n = 29, min = 18, max = 54) ) head(dfx) group sex age 1 A M 22.44750 2 A M 52.92616 3 A F 30.00443 4 A M 39.56907 5 A M 18.89180 6 A F 50.81139 #Note the use of the '.' function to allow # group and sex to be used without quoting ddply(dfx, .(group, sex), summarize,mean = round(mean(age), 2),sd = round(sd(age), 2)) group sex mean sd 1 A F 40.41 14.71 2 A M 30.35 13.17 3 B F 34.81 12.76 4 B M 34.04 13.36 5 C F 35.09 13.39 6 C M 28.53 4.57 # An example using a formula for .variables ddply(baseball[1:100,], ~ year, nrow) year V1 1 1871 7 2 1872 13 3 1873 13 4 1874 15 5 1875 17 6 1876 15 7 1877 17 8 1878 3 # Applying two functions; nrow and ncol ddply(baseball, .(lg), c("nrow", "ncol")) lg nrow ncol 1 65 22 2 AA 171 22 3 AL 10007 22 4 FL 37 22 5 NL 11378 22 6 PL 32 22 7 UA 9 22 # Calculate mean runs batted in for each year rbi <- ddply(baseball, .(year), summarise,mean_rbi = mean(rbi, na.rm = TRUE)) head(rbi) year mean_rbi 1 1871 22.28571 2 1872 20.53846 3 1873 30.92308 4 1874 29.00000 5 1875 31.58824 6 1876 30.13333 # Plot a line chart of the result plot(mean_rbi ~ year, type = "l", data = rbi) # make new variable career_year based on the # start year for each player (id) base2 <- ddply(baseball, .(id), mutate,career_year = year - min(year) + 1) head(base2)
id year stint team lg g ab r h X2b X3b hr rbi sb cs bb so ibb hbp sh sf gidp career_year 1 aaronha01 1954 1 ML1 NL 122 468 58 131 27 6 13 69 2 2 28 39 NA 3 6 4 13 1 2 aaronha01 1955 1 ML1 NL 153 602 105 189 37 9 27 106 3 1 49 61 5 3 7 4 20 2 3 aaronha01 1956 1 ML1 NL 153 609 106 200 34 14 26 92 2 4 37 54 6 2 5 7 21 3 4 aaronha01 1957 1 ML1 NL 151 615 118 198 27 6 44 132 1 1 57 58 15 0 0 3 13 4 5 aaronha01 1958 1 ML1 NL 153 601 109 196 34 4 30 95 4 1 59 49 16 1 0 3 21 5 6 aaronha01 1959 1 ML1 NL 154 629 116 223 46 7 39 123 8 0 51 54 17 4 0 9 19 6
R语言利器之ddply和aggregate的更多相关文章
- 【R笔记】R语言利器之ddply
ddply()函数位于plyr包,用于对data.frame进行分组统计,与tapply有些类似 准备数据 # 使用stringsAsFactors=F来防止data.frame把向量转为factor ...
- R语言函数总结(转)
R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达 ...
- 【R笔记】R语言函数总结
R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字 ...
- R语言笔记完整版
[R笔记]R语言函数总结 R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头, ...
- 【转】R语言函数总结
原博: R语言与数据挖掘:公式:数据:方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头, ...
- R语言学习 第九篇:plyr包
在数据分析中,整理数据的本质可以归纳为:对数据进行分割(Split),然后应用(Apply)某些处理函数,最后将结果重新组合(Combine)成所需的格式返回,简单描述为:Split - Apply ...
- 【R】R语言常用函数
R语言常用函数 基本 一.数据管理vector:向量 numeric:数值型向量 logical:逻辑型向量character:字符型向量 list:列表 data.frame:数据框c:连接为向量或 ...
- php调试利器之phpdbg
信海龙的博客 php调试利器之phpdbg 简介 PHPDBG是一个PHP的SAPI模块,可以在不用修改代码和不影响性能的情况下控制PHP的运行环境. PHPDBG的目标是成为一个轻量级.强大.易用的 ...
- R语言进阶之4:数据整形(reshape)
一.通过重新构建数据进行整形 数据整形最直接的思路就把数据全部向量化,然后按要求用向量构建其他类型的数据.这样是不是会产生大量的中间变量.占用大量内存?没错.R语言的任何函数(包括赋值)操作都会有同样 ...
随机推荐
- Microsoft FIM: Working with Domino Connector v8
Microsoft FIM: Working with Domino Connector v8 Posted on July 22, 2013 by Michael Pearn - 4 Comment ...
- IOS杂笔- 7(类方法load与initialize的区别 浅析)
在介绍两种类方法之前,NSObject Class Reference里对这两个方法说明: +(void)initialize The runtime sends initialize to each ...
- paas架构之docker——安装
1. 概要 本文描述docker的安装 参考官方文档:https://docs.docker.com/engine/installation/linux/ubuntulinux/ 安装操作系统: Ub ...
- Effective Java 02 Consider a builder when faced with many constructor parameters
Advantage It simulates named optional parameters which is easily used to client API. Detect the inva ...
- Effective Java 38 Check parameters for validity
For public methods, use the Javadoc @throws tag to document the exception that will be thrown if a r ...
- MySQL数据库初识(二)
8. 向数据表中插入数据记录(INSERT): 向数据表中插入数据记录有两种方法: 基本语法1:INSERT INTO 数据表 (字段名1,字段名2,字段名3……字段名n) VALUES (数据值1, ...
- 第八章 了解tempdb数据库
1.一个sqlserver数据库实例上只能有一个tempdb数据库,这个实例上所有的用户都共享这个数据库.2.tempdb数据库在每次sqlserver重启后都会重新创建,所以数据会丢失.3.因为te ...
- 问题解决——使用串口调试助手发送控制字符 协议指令 <ESC>!?
外行指挥内行的结果就是,你必须按照他想的去做,等做不出来再用自己的办法,而且必须如此. -------------------------------------------------------- ...
- internet connection sharing has been disabled by the network administrator
Start > Run > gpedit.msc Locate; Computer Configuration/Administrative Templates/Network/Netwo ...
- HDU 1232 畅通工程(并查集)
畅通工程 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Problem Des ...