【USACO】beads
题目:
You have a necklace of N red, white, or blue beads (3<=N<=350) some of which are red, others blue, and others white, arranged at random. Here are two examples for n=29:
1 2 1 2
r b b r b r r b
r b b b
r r b r
r r w r
b r w w
b b r r
b b b b
b b r b
r r b r
b r r r
b r r r
r r r b
r b r r r w
Figure A Figure B
r red bead
b blue bead
w white bead
The beads considered first and second in the text that follows have been marked in the picture.
The configuration in Figure A may be represented as a string of b's and r's, where b represents a blue bead and r represents a red one, as follows: brbrrrbbbrrrrrbrrbbrbbbbrrrrb .
Suppose you are to break the necklace at some point, lay it out straight, and then collect beads of the same color from one end until you reach a bead of a different color, and do the same for the other end (which might not be of the same color as the beads collected before this).
Determine the point where the necklace should be broken so that the most number of beads can be collected.
Example
For example, for the necklace in Figure A, 8 beads can be collected, with the breaking point either between bead 9 and bead 10 or else between bead 24 and bead 25.
In some necklaces, white beads had been included as shown in Figure B above. When collecting beads, a white bead that is encountered may be treated as either red or blue and then painted with the desired color. The string that represents this configuration can include any of the three symbols r, b and w.
Write a program to determine the largest number of beads that can be collected from a supplied necklace.
这一道题做了一整天,更郁闷的是对完答案发现自己的方法太复杂了
我总是想着先把整个项链都染色成 red 或 blue 然后把每一段的相同颜色串的数量数出来 实际上可以每次只考虑一个缺口位置的局部信息就好了 不需要提前染色 也不需要将整个项链的所有相同颜色玻璃串的个数存起来 因为存起来后 对于rwb bwr的情况还是要单独分析
用到了一些小技巧:
1.环装一定会用到mod 不过一般都是数字超过了范围用模电 这个项链可能数到-1 、-2 需要自己定义一个新的有负数的mod 或者 把信息存储两遍这样 可以在第一遍存储的最后可以直接通过加法读取下一个存储的起始的玻璃珠信息
答案:思路最清楚的代码
#include <stdio.h>
#include <string.h>
#include <assert.h> #define MAXN 400 char necklace[MAXN];
int len; /*
* Return n mod m. The C % operator is not enough because
* its behavior is undefined on negative numbers.
*/
int
mod(int n, int m)
{
while(n < )
n += m;
return n%m;
} /*
* Calculate number of beads gotten by breaking
* before character p and going in direction dir,
* which is 1 for forward and -1 for backward.
*/
int
nbreak(int p, int dir)
{
char color;
int i, n; color = 'w'; /* Start at p if going forward, bead before if going backward */
if(dir > )
i = p;
else
i = mod(p-, len); /* We use "n<len" to cut off loops that go around the whole necklace */
for(n=; n<len; n++, i=mod(i+dir, len)) {
/* record which color we're going to collect */
if(color == 'w' && necklace[i] != 'w')
color = necklace[i]; /*
* If we've chosen a color and see a bead
* not white and not that color, stop
*/
if(color != 'w' && necklace[i] != 'w' && necklace[i] != color)
break;
}
return n;
} void
main(void)
{
FILE *fin, *fout;
int i, n, m; fin = fopen("beads.in", "r");
fout = fopen("beads.out", "w");
assert(fin != NULL && fout != NULL); fscanf(fin, "%d %s", &len, necklace);
assert(strlen(necklace) == len); m = ;
for(i=; i<len; i++) {
n = nbreak(i, ) + nbreak(i, -);
if(n > m)
m = n;
} /*
* If the whole necklace can be gotten with a good
* break, we'll sometimes count beads more than
* once. this can only happen when the whole necklace
* can be taken, when beads that can be grabbed from
* the right of the break can also be grabbed from the left.
*/
if(m > len)
m = len; fprintf(fout, "%d\n", m);
exit ();
}
动态规划的答案我没怎么看还:
#include <stdio.h>
#include <string.h>
#include <algorithm> using namespace std; FILE *in,*out; int main () {
in = fopen("beads.in", "r");
out = fopen ("beads.out", "w"); int n;
char tmp[], s[];
fscanf(in, "%d %s", &n, tmp); strcpy(s, tmp);
strcat(s, tmp); int left[][], right[][];
left[][] = left[][] = ; for (int i=; i<= * n; i++){
if (s[i - ] == 'r'){
left[i][] = left[i - ][] + ;
left[i][] = ;
} else if (s[i - ] == 'b'){
left[i][] = left[i - ][] + ;
left[i][] = ;
} else {
left[i][] = left[i - ][] + ;
left[i][] = left[i - ][] + ;
}
} right[ * n][] = right[ * n][] = ;
for (int i= * n - ; i >= ; i--){
if (s[i] == 'r'){
right[i][] = right[i + ][] + ;
right[i][] = ;
} else if (s[i] == 'b'){
right[i][] = right[i + ][] + ;
right[i][] = ;
} else {
right[i][] = right[i + ][] + ;
right[i][] = right[i + ][] + ;
}
} int m = ;
for (int i=; i< * n; i++)
m = max(m, max(left[i][], left[i][]) + max(right[i][], right[i][]));
m = min(m, n);
fprintf(out, "%d\n", m);
fclose(in); fclose(out);
return ;
}
简便的方案:
#include <iostream>
#include <fstream>
using namespace std; int main() {
fstream input, output;
string inputFilename = "beads.in", outputFilename = "beads.out";
input.open(inputFilename.c_str(), ios::in);
output.open(outputFilename.c_str(), ios::out); int n, max=, current, state, i, j;
string s;
char c; input >> n >> s;
s = s+s;
for(i=; i<n; i++) {
c = (char) s[i];
if(c == 'w')
state = ;
else
state = ;
j = i;
current = ;
while(state <= ) {
// dont go further in second string than starting position in first string
while(j<n+i && (s[j] == c || s[j] == 'w')) {
current++;
j++;
} // while
state++;
c = s[j];
} // while
if(current > max)
max = current;
} // for output << max << endl;
return ;
} // main
我自己写的非常复杂 但至少还对了的代码:
#include<stdio.h>
#include<string.h>
#include<assert.h> #define MaxLength 350
typedef struct{
int color;
int num;
int type;
} Pos; typedef struct {
int colorleft;
int colorright;
int location;
int length;
}RWB; typedef struct {
int num;
int type;
}NUM;
enum Type{left, right}; int main()
{
FILE *in, *out;
int num, longgest = ;
int countr = , countb = ;
int tmp;
int length = ;
int recordnum = , recorddnum = ;
int i = , j;
int first = -; //最小的记录点
char necklace[]; in = fopen("beads.in", "r");
out = fopen("beads.out", "w"); fscanf(in, "%d", &length);
fscanf(in, "%s", necklace); while(i < length) //得到项链长度
{
if(necklace[i] == 'r')
countr++;
else if(necklace[i] == 'b')
countb++;
i++;
} if(countr == || countb == )
{
fprintf(out ,"%d\n", length);
return ;
} Pos record[MaxLength];
RWB recordd[MaxLength];
i = ;
while(i < length) //定位第一个left
{
if(necklace[i] != 'w' && necklace[i+] == 'w')
{
first = i;
record[].color = necklace[i];
record[].num = i;
record[].type = left;
recordnum++;
break;
}
i++;
} if(first != -)
{
for(i = first + ; i != first; i = (i + ) % length) //记录 bw wb rw wr的位置
{
if(necklace[i] != 'w' && necklace[(i+)%length] == 'w')
{
record[recordnum].color = necklace[i];
record[recordnum].num = i;
record[recordnum].type = left;
recordnum++;
}
else if(necklace[i] == 'w' && necklace[(i+)%length] != 'w')
{
record[recordnum].color = necklace[(i+)%length];
record[recordnum].num = (i+)%length;
record[recordnum].type = right;
recordnum++;
}
} assert(recordnum % == );
assert(record[recordnum-].type == right); for(i = ; i < recordnum; i = i + ) //根据记录信息 将 rw...wr 和 bw...wb的直接染色 将 rw..wb bw..wr的取出
{
assert((record[i].type == left && record[i+].type == right));
if(record[i].color == record[i+].color)
{
for(j = (record[i].num + )%length; j != record[i+].num; j = (j + ) % length)
{
necklace[j] = record[i].color;
} }
else
{
recordd[recorddnum].colorleft = record[i].color;
recordd[recorddnum].colorright = record[i+].color;
recordd[recorddnum].length = record[i+].num - record[i].num - ;
recordd[recorddnum].location = record[i].num;
recorddnum++;
}
}
} //fprintf(out,"%s",necklace); NUM record2[MaxLength];
int record2num = ;
int numtmp = ;
for(i = ; i < length; i++) //统计项链相同颜色的个数 存放在数组中
{
if(necklace[i] == necklace[i+] )
{
numtmp++;
}
else
{
record2[record2num].num = numtmp;
if(necklace[i] == 'w')
record2[record2num].type = ;
else
record2[record2num].type = ;
numtmp = ;
record2num++;
}
}
if(necklace[] == necklace[length - ]) //处理最后颜色与第一个颜色相同
{
record2num--;
record2[].num += record2[record2num].num;
}
for(i = ; i < record2num; i++)
{
record2[record2num + i] = record2[i];
} int longgesttmp = ;
int n;
for(i = ; i < record2num ;i++) //根据存储的数组找最长链
{
n = ;
j = i;
longgesttmp = ;
while()
{
if(record2[j].type == )
n++;
if(n == && j % record2num == i && record2[j].type == )
break;
if(n<)
longgesttmp += record2[j].num;
else
break;
j++;
}
if(longgesttmp > longgest)
{
longgest = longgesttmp;
}
} fprintf(out , "%d\n", longgest); return ;
}
【USACO】beads的更多相关文章
- POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 【USACO】距离咨询(最近公共祖先)
POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 [USACO]距离咨询(最近公共祖先) Description F ...
- 1642: 【USACO】Payback(还债)
1642: [USACO]Payback(还债) 时间限制: 1 Sec 内存限制: 64 MB 提交: 190 解决: 95 [提交] [状态] [讨论版] [命题人:外部导入] 题目描述 &quo ...
- 1519: 【USACO】超级书架
1519: [USACO]超级书架 时间限制: 1 Sec 内存限制: 64 MB 提交: 1735 解决: 891 [提交] [状态] [讨论版] [命题人:外部导入] 题目描述 Farmer Jo ...
- Java实现【USACO】1.1.2 贪婪的礼物送礼者 Greedy Gift Givers
[USACO]1.1.2 贪婪的礼物送礼者 Greedy Gift Givers 题目描述 对于一群要互送礼物的朋友,你要确定每个人送出的礼物比收到的多多少(and vice versa for th ...
- 【CPLUSOJ】【USACO】【差分约束】排队(layout)
[题目描述] Robin喜欢将他的奶牛们排成一队.假设他有N头奶牛,编号为1至N.这些奶牛按照编号大小排列,并且由于它们都很想早点吃饭,于是就很可能出现多头奶牛挤在同一位置的情况(也就是说,如果我们认 ...
- 【USACO】Dining
[题目链接] [JZXX]点击打开链接 [caioj]点击打开链接 [算法] 拆点+网络流 [代码] #include<bits/stdc++.h> using namespace std ...
- 【USACO】Optimal Milking
题目链接 : [POJ]点击打开链接 [caioj]点击打开链接 算法 : 1:跑一遍弗洛伊德,求出点与点之间的最短路径 2:二分答案,二分”最大值最小“ 3.1:建边,将 ...
- 【USACO】 Balanced Photo
[题目链接] 点击打开链接 [算法] 树状数组 [代码] #include<bits/stdc++.h> using namespace std; int i,N,ans,l1,l2; ] ...
- 【USACO】 Balanced Lineup
[题目链接] 点击打开链接 [算法] 这是一道经典的最值查询(RMQ)问题. 我们首先想到线段树.但有没有更快的方法呢?对于这类问题,我们可以用ST表(稀疏表)算法求解. 稀疏表算法.其实也是一种动态 ...
随机推荐
- 【poj2186】 Popular Cows
http://poj.org/problem?id=2186 (题目链接) 题意 给出一个n个点m条边的有向图,求其中没有出度强连通分量所包含的点有几个 Solution 其实这道题的题解已经在“题意 ...
- 【poj1182】 食物链
http://poj.org/problem?id=1182 (题目链接) 题意 中文题 Solution 带权并查集. 神犇博客,秒懂 fa记录父亲,r记录与父亲的关系.%3运用的很巧妙. 代码 / ...
- BZOJ2302 [HAOI2011]Problem c
Description 给n个人安排座位,先给每个人一个1~n的编号,设第i个人的编号为ai(不同人的编号可以相同),接着从第一个人开始,大家依次入座,第i个人来了以后尝试坐到ai,如果ai被占据了, ...
- TYVJ1038 忠诚
hzw学长博客里的2048,根本停不下来! 描述 老管家是一个聪明能干的人.他为财主工作了整整10年,财主为了让自已账目更加清楚.要 求管家每天记k次账,由于管家聪明能干,因而管家总是让财主十分满意. ...
- event driven的一些概念
1. event :Something that happens during your application that requires a response. 2.event object:Th ...
- hihocoder 1154 Spring Outing
传送门 #1154 : Spring Outing 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 You class are planning for a spring ...
- SCU 4424(求子集排列数)
A - A Time Limit:0MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit Status Practice ...
- intent属性
private String mAction;private Uri mData;private String mType;private String mPackage;private Compon ...
- Android:View中的performClick()触发条件
http://blog.sina.com.cn/s/blog_70ae1d7b0102v7uk.html 先看看performClick()源码: public boolean performCl ...
- 锋利的jQuery-7--$.extend()
$.extend()主要有两个功能: 1.扩展jQuery对象 jQuery.extend({ min: function(a, b) { return a < b ? a : b; }, }) ...