Problem E
In-Circle
Input: Standard Input

Output: Standard Output

In-circle of a triangle is the circle that touches all the three sides of the triangle internally. The center of the in-circle of a triangle happens to be the common intersection point of the three bisectors of the internal angles. In this problem you will not be asked to find the in-circle of a triangle, but will be asked to do the opposite!!

 
You can see in the figure above that the in-circle of triangle ABC touches the sides AB, BC and CA at point P, Q and R respectively and P, Q and R divides AB, BC and CA in ratio m1:n1, m2:n2 and m3:n3 respectively. Given these ratios and the value of the radius of in-circle, you have to find the area of triangle ABC.

Input

First line of the input file contains an integer N (0<N<50001), which denotes how many input sets are to follow. The description of each set is given below.

Each set consists of four lines. The first line contains a floating-point number r (1<r<5000), which denotes the radius of the in-circle. Each of the next three lines contains two floating-point numbers, which denote the values of m1, n1, m2, n2, m3 and n3 (1<m1, n1, m2, n2, m3, n3<50000) respectively.

Output

For each set of input produce one line of output. This line contains a floating-point number that denotes the area of the triangle ABC. This floating-point number should contain four digits after the decimal point. Errors less than 5*10-3 will be ignored. Use double-precision floating-point number for calculation.

Sample Input                               Output for Sample Input

2

140.9500536497

15.3010457320 550.3704847907

464.9681681852 65.9737378230

55.0132446384 10.7791711946

208.2835101182

145.7725891419 8.8264176452

7.6610997600 436.1911036207

483.6031801012 140.2797089713

400156.4075

908824.1322


Problemsetter: Shahriar Manzoor

Special Thanks: Mohammad Mahmudur Rahman


  解析几何

  思路是先设AP=AC=x,则根据比例关系可以知道:

  三边  a = (n1+m1)/m1*x;  b = (n3+m3)/n3*x;  c = m3/n3*(n2+m2)/n2*x;

  将系数提出,设 k1 = (n1+m1)/m1;  k2 = (n3+m3)/n3;  k3 = m3/n3*(n2+m2)/n2;

  由海伦公式可知 S = sqrt(p*(p-a)*(p-b)*(p-c));  (p = (a+b+c)/2)  //公式一

  由边和半径的也能求出三角形的面积 S = (a*r+b*r+c*r)/2 = p*r;      //公式二

  联立公式一和公式二可得:

  x = 2*sqrt(r*r*(k1+k2+k3)/((k2+k3-k1)*(k1+k3-k2)*(k1+k2-k3)));

  带入公式一得:

  S = (k1+k2+k3)*x*r/2;

  PS:代码很短,主要是分析过程。

  代码

 #include <iostream>
#include <cmath>
#include <iomanip>
using namespace std;
int main()
{
int n;
cin>>n;
while(n--){
double r;
double m1, n1, m2, n2, m3, n3;
cin>>r; //输入半径
cin>>m1>>n1>>m2>>n2>>m3>>n3; //输入比例
double k1,k2,k3;
k1 = (n1+m1)/m1;
k2 = m3*(n2+m2)/(n3*n2);
k3 = (n3+m3)/n3;
double x = *sqrt(r*r*(k1+k2+k3)/((k2+k3-k1)*(k1+k3-k2)*(k1+k2-k3))); //设AP=AR=x
double s = (k1+k2+k3)*x*r/;
cout<<setiosflags(ios::fixed)<<setprecision();
cout<<s<<endl;
}
return ;
}

Freecode : www.cnblogs.com/yym2013

UVa 11524:In-Circle(解析几何)的更多相关文章

  1. UVa 11524 - InCircle

    推公式 #include <cstdio> #include <cmath> double Cal( double a, double b, double c ) { retu ...

  2. uva 11524 - InCircle (二分法)

    题意:三角形ABC的内切圆把它的三边分别划分成 m1:n1,m2:n2 和 m3:n3 的比例.另外已知内切圆的半径 r ,求三角形ABC 的面积. #include<iostream> ...

  3. ACM计算几何题目推荐

    //第一期 计算几何题的特点与做题要领: 1.大部分不会很难,少部分题目思路很巧妙 2.做计算几何题目,模板很重要,模板必须高度可靠. 3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面 ...

  4. uva 1463 - Largest Empty Circle on a Segment(二分+三分+几何)

    题目链接:uva 1463 - Largest Empty Circle on a Segment 二分半径,对于每一个半径,用三分求出线段到线段的最短距离,依据最短距离能够确定当前R下每条线段在[0 ...

  5. .Uva&LA部分题目代码

    1.LA 5694 Adding New Machine 关键词:数据结构,线段树,扫描线(FIFO) #include <algorithm> #include <cstdio&g ...

  6. UVA 1452 八 Jump

    Jump Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Status Practi ...

  7. UVA - 524 Prime Ring Problem(dfs回溯法)

    UVA - 524 Prime Ring Problem Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & % ...

  8. BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1070  Solved: 596[Submit][Status] ...

  9. UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There Was One / POJ 3517 And Then There Was One / Aizu 1275 And Then There Was One (动态规划,思维题)

    UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There W ...

随机推荐

  1. 不要在初始化方法和dealloc方法中使用Accessor Methods

    苹果在<Advanced Memory Management Programming Guide>指出: Don’t Use Accessor Methods in Initializer ...

  2. XSS Filter Evasion Cheat Sheet 中文版

    前言 译者注: 翻译本文的最初原因是当我自己看到这篇文章后,觉得它是非常有价值.但是这么著名的一个备忘录却一直没有人把它翻译成中文版.很多人仅仅是简单的把文中的 各种代码复制下来,然后看起来很刁的发在 ...

  3. Linux下/proc目录简介

    文章转载至:http://blog.csdn.net/zdwzzu2006/article/details/7747977 1. /proc目录Linux 内核提供了一种通过 /proc 文件系统,在 ...

  4. memcached 系列2:memcached实例(转载)

    在上一篇文章,我们讲了,为什么要使用memched做为缓存服务器(没看的同学请点 这里).下面让我们以memcached-1.2.1-win32版本的服务组件(安装后是以一个windows服务做dae ...

  5. iOS ASIHTTPRequest用https协议加密请求

    iOS 终端请求服务端数据时,为了保证数据安全,我们一般会使用https协议加密,而对于iOS的网络编程,我们一般会使用开源框架:ASIHTTPRequest,但是如果使用传统的http方式,即使忽略 ...

  6. ExtJS学习之路第二步:Ext.Component 和 Ext.dom.Element 的区别

    让我们来初步的探讨下Ext.Component和Ext.Element的区别. jQuery偏重于DOM元素的操作 1.每一个HTML页面都有一个层次分明的DOM树模型,浏览器中的所有内容都有相应的D ...

  7. 通用js类库

    /* 其它通用函数 */$(function() { // var General = function() { var _self = this; /* 写 cookie 操作 */ _self.S ...

  8. js矩阵菜单或3D立体预览图片效果

    js矩阵菜单或3D立体预览图片效果 下载地址: http://files.cnblogs.com/elves/js%E7%9F%A9%E9%98%B5%E8%8F%9C%E5%8D%95%E6%88% ...

  9. [Effective JavaScript笔记]第3条:当心隐式的强制转换

    js对类型错误出奇的宽容 3+true;  //4 3*””;  //0 3+[]; //3 3+[3]; //33 以上表达式在许多语言早就变红了.而js不但不报错还给你个结果. 极少情况会产生即时 ...

  10. Nginx安装与配置文件解析

    导读 Nginx是一款开放源代码的高性能HTTP服务器和反向代理服务器,同时支持IMAP/POP3代理服务,是一款自由的软件,同时也是运维工程师必会的一种服务器,下面我就简单的说一下Nginx服务器的 ...