Guaranteeing message processing —— 可靠的消息处理
Storm's reliability API: how Storm guarantees that every message coming off a spout will be fully processed.
(storm的可靠性API: storm如何保证spout发出的每一个tuple都被完整处理。)
本文导读:
、简介
、理解消息被完整处理
、消息的生命周期
、可靠相关的API
、高效的实现tuple tree
、选择合适的可靠性级别
、集群的各级容错性
7.1 任务级失败
.2任务槽(slot)故障
.3集群节点(机器)故障
、小结 附:官网文档guaranteeing message processing 译文
1 简介
storm可以确保spout发送出来的每个消息都会被完整的处理。本章将会描述storm体系是如何达到这个目标的,并将会详述开发者应该如何使用storm的这些机制来实现数据的可靠处理。
2 理解消息被完整处理
一个消息(tuple)从spout发送出来,可能会导致成百上千的消息基于此消息被创建。
我们来思考一下流式的“单词统计”的例子:
storm任务从数据源(Kestrel queue)每次读取一个完整的英文句子;将这个句子分解为独立的单词,最后,实时的输出每个单词以及它出现过的次数。
本例中,每个从spout发送出来的消息(每个英文句子)都会触发很多的消息被创建,那些从句子中分隔出来的单词就是被创建出来的新消息。
这些消息构成一个树状结构,我们称之为“tuple tree”,看起来如图1所示:
图1 示例tuple tree
在什么条件下,Storm才会认为一个从spout发送出来的消息被完整处理呢?答案就是下面的条件同时被满足:
- tuple tree不再生长
- 树中的任何消息被标识为“已处理”
如果在指定的时间内,一个消息衍生出来的tuple tree未被完全处理成功,则认为此消息未被完整处理。这个超时值可以通过任务级参数Config.TOPOLOGY_MESSAGE_TIMEOUT_SECS 进行配置,默认超时值为30秒。
3 消息的生命周期
如果消息被完整处理或者未被完整处理,Storm会如何进行接下来的操作呢?为了弄清这个问题,我们来研究一下从spout发出来的消息的生命周期。这里列出了spout应该实现的接口:
首先, Storm使用spout实例的nextTuple()方法从spout请求一个消息(tuple)。 收到请求以后,spout使用open方法中提供的SpoutOutputCollector向它的输出流发送一个或多个消息。每发送一个消息,Spout会给这个消息提供一个message ID,它将会被用来标识这个消息。
假设我们从kestrel队列中读取消息,Spout会将kestrel 队列为这个消息设置的ID作为此消息的message ID。 向SpoutOutputCollector中发送消息格式如下:
接来下,这些消息会被发送到后续业务处理的bolts, 并且Storm会跟踪由此消息产生出来的新消息。当检测到一个消息衍生出来的tuple tree被完整处理后,Storm会调用Spout中的ack方法,并将此消息的messageID作为参数传入。同理,如果某消息处理超时,则此消息对应的Spout的fail方法会被调用,调用时此消息的messageID会被作为参数传入。
注意:一个消息只会由发送它的那个spout任务来调用ack或fail。如果系统中某个spout由多个任务运行,消息也只会由创建它的spout任务来应答(ack或fail),决不会由其他的spout任务来应答。
我们继续使用从kestrel队列中读取消息的例子来阐述高可靠性下spout需要做些什么(假设这个spout的名字是KestrelSpout)。
我们先简述一下kestrel消息队列:
当KestrelSpout从kestrel队列中读取一个消息,表示它“打开”了队列中某个消息。这意味着,此消息并未从队列中真正的删除,而是将此消息设置为“pending”状态,它等待来自客户端的应答,被应答以后,此消息才会被真正的从队列中删除。处于“pending”状态的消息不会被其他的客户端看到。另外,如果一个客户端意外的断开连接,则由此客户端“打开”的所有消息都会被重新加入到队列中。当消息被“打开”的时候,kestrel队列同时会为这个消息提供一个唯一的标识。
KestrelSpout就是使用这个唯一的标识作为这个tuple的messageID的。稍后当ack或fail被调用的时候,KestrelSpout会把ack或者fail连同messageID一起发送给kestrel队列,kestrel会将消息从队列中真正删除或者将它重新放回队列中。
4 可靠相关的API
为了使用Storm提供的可靠处理特性,我们需要做两件事情:
- 无论何时在tuple tree中创建了一个新的节点,我们需要明确的通知Storm;
- 当处理完一个单独的消息时,我们需要告诉Storm 这棵tuple tree的变化状态。
通过上面的两步,storm就可以检测到一个tuple tree何时被完全处理了,并且会调用相关的ack或fail方法。Storm提供了简单明了的方法来完成上述两步。
为tuple tree中指定的节点增加一个新的节点,我们称之为锚定(anchoring)。锚定是在我们发送消息的同时进行的。为了更容易说明问题,我们使用下面代码作为例子。本示例的bolt将包含整句话的消息分解为一系列的子消息,每个子消息包含一个单词。
每个消息都通过这种方式被锚定:把输入消息作为emit方法的第一个参数。因为word消息被锚定在了输入消息上,这个输入消息是spout发送过来的tuple tree的根节点,如果任意一个word消息处理失败,派生这个tuple tree那个spout 消息将会被重新发送。
与此相反,我们来看看使用下面的方式emit消息时,Storm会如何处理:
如果以这种方式发送消息,将会导致这个消息不会被锚定。如果此tuple tree中的消息处理失败,派生此tuple tree的根消息不会被重新发送。根据任务的容错级别,有时候很适合发送一个非锚定的消息。
一个输出消息可以被锚定在一个或者多个输入消息上,这在做join或聚合的时候是很有用的。一个被多重锚定的消息处理失败,会导致与之关联的多个spout消息被重新发送。多重锚定通过在emit方法中指定多个输入消息来实现:
多重锚定会将被锚定的消息加到多棵tuple tree上。
注意:多重绑定可能会破坏传统的树形结构,从而构成一个DAGs(有向无环图),如图2所示:
图2 多重锚定构成的钻石型结构
Storm的实现可以像处理树那样来处理DAGs。
锚定表明了如何将一个消息加入到指定的tuple tree中,高可靠处理API的接下来部分将向您描述当处理完tuple tree中一个单独的消息时我们该做些什么。这些是通过OutputCollector 的ack和fail方法来实现的。回头看一下例子SplitSentence,可以发现当所有的word消息被发送完成后,输入的表示句子的消息会被应答(acked)。
每个被处理的消息必须表明成功或失败(acked 或者failed)。Storm是使用内存来跟踪每个消息的处理情况的,如果被处理的消息没有应答的话,迟早内存会被耗尽!>
很多bolt遵循特定的处理流程: 读取一个消息、发送它派生出来的子消息、在execute结尾处应答此消息。一般的过滤器(filter)或者是简单的处理功能都是这类的应用。Storm有一个BasicBolt接口封装了上述的流程。示例SplitSentence可以使用BasicBolt来重写:
使用这种方式,代码比之前稍微简单了一些,但是实现的功能是一样的。发送到BasicOutputCollector的消息会被自动的锚定到输入消息,并且,当execute执行完毕的时候,会自动的应答输入消息。
很多情况下,一个消息需要延迟应答,例如聚合或者是join。只有根据一组输入消息得到一个结果之后,才会应答之前所有的输入消息。并且聚合和join大部分时候对输出消息都是多重锚定。然而,这些特性不是IBasicBolt所能处理的。
5 高效的实现tuple tree
Storm 系统中有一组叫做“acker”的特殊的任务,它们负责跟踪DAG(有向无环图)中的每个消息。每当发现一个DAG被完全处理,它就向创建这个根消息的spout任务发送一个信号。拓扑中acker任务的并行度可以通过配置参数Config.TOPOLOGY_ACKERS来设置。默认的acker任务并行度为1,当系统中有大量的消息时,应该适当提高acker任务的并发度。
为了理解Storm可靠性处理机制,我们从研究一个消息的生命周期和tuple tree的管理入手。当一个消息被创建的时候(无论是在spout还是bolt中),系统都为该消息分配一个64bit的随机值作为id。这些随机的id是acker用来跟踪由spout消息派生出来的tuple tree的。
每个消息都知道它所在的tuple tree对应的根消息的id。每当bolt新生成一个消息,对应tuple tree中的根消息的messageId就拷贝到这个消息中。当这个消息被应答的时候,它就把关于tuple tree变化的信息发送给跟踪这棵树的acker。例如,他会告诉acker:本消息已经处理完毕,但是我派生出了一些新的消息,帮忙跟踪一下吧。
举个例子,假设消息D和E是由消息C派生出来的,这里演示了消息C被应答时,tuple tree是如何变化的。
因为在C被从树中移除的同时D和E会被加入到tuple tree中,因此tuple tree不会被过早的认为已完全处理。
关于Storm如何跟踪tuple tree,我们再深入的探讨一下。前面说过系统中可以有任意个数的acker,那么,每当一个消息被创建或应答的时候,它怎么知道应该通知哪个acker呢?
系统使用一种哈希算法来根据spout消息的messageId确定由哪个acker跟踪此消息派生出来的tuple tree。因为每个消息都知道与之对应的根消息的messageId,因此它知道应该与哪个acker通信。
当spout发送一个消息的时候,它就通知对应的acker一个新的根消息产生了,这时acker就会创建一个新的tuple tree。当acker发现这棵树被完全处理之后,他就会通知对应的spout任务。
tuple是如何被跟踪的呢?系统中有成千上万的消息,如果为每个spout发送的消息都构建一棵树的话,很快内存就会耗尽。所以,必须采用不同的策略来跟踪每个消息。由于使用了新的跟踪算法,Storm只需要固定的内存(大约20字节)就可以跟踪一棵树。这个算法是storm正确运行的核心,也是storm最大的突破。
acker任务保存了spout消息id到一对值的映射。第一个值就是spout的任务id,通过这个id,acker就知道消息处理完成时该通知哪个spout任务。第二个值是一个64bit的数字,我们称之为“ack val”, 它是树中所有消息的随机id的异或结果。ack val表示了整棵树的的状态,无论这棵树多大,只需要这个固定大小的数字就可以跟踪整棵树。当消息被创建和被应答的时候都会有相同的消息id发送过来做异或。
每当acker发现一棵树的ack val值为0的时候,它就知道这棵树已经被完全处理了。因为消息的随机ID是一个64bit的值,因此ack val在树处理完之前被置为0的概率非常小。假设你每秒钟发送一万个消息,从概率上说,至少需要50,000,000年才会有机会发生一次错误。即使如此,也只有在这个消息确实处理失败的情况下才会有数据的丢失!
6 选择合适的可靠性级别
Acker任务是轻量级的,所以在拓扑中并不需要太多的acker存在。可以通过Storm UI来观察acker任务的吞吐量,如果看上去吞吐量不够的话,说明需要添加额外的acker。
如果你并不要求每个消息必须被处理(你允许在处理过程中丢失一些信息),那么可以关闭消息的可靠处理机制,从而可以获取较好的性能。关闭消息的可靠处理机制意味着系统中的消息数会减半(每个消息不需要应答了)。另外,关闭消息的可靠处理可以减少消息的大小(不需要每个tuple记录它的根id了),从而节省带宽。
有三种方法可以关系消息的可靠处理机制:
- 将参数Config.TOPOLOGY_ACKERS设置为0,通过此方法,当Spout发送一个消息的时候,它的ack方法将立刻被调用;
- 第二个方法是Spout发送一个消息时,不指定此消息的messageID。当需要关闭特定消息可靠性的时候,可以使用此方法;
- 最后,如果你不在意某个消息派生出来的子孙消息的可靠性,则此消息派生出来的子消息在发送时不要做锚定,即在emit方法中不指定输入消息。因为这些子孙消息没有被锚定在任何tuple tree中,因此他们的失败不会引起任何spout重新发送消息。
7 集群的各级容错
到现在为止,大家已经理解了Storm的可靠性机制,并且知道了如何选择不同的可靠性级别来满足需求。接下来我们研究一下Storm如何保证在各种情况下确保数据不丢失。
7.1 任务级失败
- 因为bolt任务crash引起的消息未被应答。此时,acker中所有与此bolt任务关联的消息都会因为超时而失败,对应spout的fail方法将被调用。
- acker任务失败。如果acker任务本身失败了,它在失败之前持有的所有消息都将会因为超时而失败。Spout的fail方法将被调用。
- Spout任务失败。这种情况下,Spout任务对接的外部设备(如MQ)负责消息的完整性。例如当客户端异常的情况下,kestrel队列会将处于pending状态的所有的消息重新放回到队列中。
7.2 任务槽(slot) 故障
- worker失败。每个worker中包含数个bolt(或spout)任务。supervisor负责监控这些任务,当worker失败后,supervisor会尝试在本机重启它。
- supervisor失败。supervisor是无状态的,因此supervisor的失败不会影响当前正在运行的任务,只要及时的将它重新启动即可。supervisor不是自举的,需要外部监控来及时重启。
- nimbus失败。nimbus是无状态的,因此nimbus的失败不会影响当前正在运行的任务(nimbus失败时,无法提交新的任务),只要及时的将它重新启动即可。nimbus不是自举的,需要外部监控来及时重启。
7.3. 集群节点(机器)故障
- storm集群中的节点故障。此时nimbus会将此机器上所有正在运行的任务转移到其他可用的机器上运行。
- zookeeper集群中的节点故障。zookeeper保证少于半数的机器宕机仍可正常运行,及时修复故障机器即可。
8 小结
本章介绍了storm集群如何实现数据的可靠处理。借助于创新性的tuple tree跟踪技术,storm高效的通过数据的应答机制来保证数据不丢失。
storm集群中除nimbus外,没有单点存在,任何节点都可以出故障而保证数据不会丢失。nimbus被设计为无状态的,只要可以及时重启,就不会影响正在运行的任务。
参考链接:
1、storm官方文档:Guaranteeing message processing
2、徐明明技术博客:Twitter Storm如何保证消息不丢失
译文解读如下:
1、What does it mean for a message to be "fully processed"?(理解完全处理)—— 处理成功:每个消息得到处理;处理失败:超时
Storm considers a tuple coming off a spout "fully processed" when the tuple tree has been exhausted and every message in the tree has been processed. A tuple is considered failed when its tree of messages fails to be fully processed within a specified timeout. This timeout can be configured on a topology-specific basis using theConfig.TOPOLOGY_MESSAGE_TIMEOUT_SECS configuration and defaults to 30 seconds.
2、What happens if a message is fully processed or fails to be fully processed?(完全处理后做什么) —— 据message id 去 ack/fail ,同一个task
If Storm detects that a tuple is fully processed, Storm will call the ack
method on the originating Spout
task with the message id that the Spout
provided to Storm. Likewise, if the tuple times-out Storm will call the fail
method on the Spout
.
Note that a tuple will be acked or failed by the exact same Spout
task that created it. So if a Spout
is executing as many tasks across the cluster, a tuple won't be acked or failed by a different task than the one that created it.
3、What is Storm's reliability API?(可靠性API是什么) —— anchoring 绑定
There's two things you have to do as a user to benefit from Storm's reliability capabilities. First, you need to tell Storm whenever you're creating a new link in the tree of tuples. Second, you need to tell Storm when you have finished processing an individual tuple. By doing both these things, Storm can detect when the tree of tuples is fully processed and can ack or fail the spout tuple appropriately. Storm's API provides a concise way of doing both of these tasks.
Specifying a link in the tuple tree is called anchoring. Anchoring is done at the same time you emit a new tuple.
Every tuple you process must be acked or failed. Storm uses memory to track each tuple, so if you don't ack/fail every tuple, the task will eventually run out of memory.
4、How do I make my applications work correctly given that tuples can be replayed? —— 事务性拓扑 至少处理一次
As always in software design, the answer is "it depends." Storm 0.7.0 introduced the "transactional topologies" feature, which enables you to get fully fault-tolerant exactly-once messaging semantics for most computations. Read more about transactional topologies here.
5、How does Storm implement reliability in an efficient way?(实现可靠性?) —— acker task 跟踪tuple树
A Storm topology has a set of special "acker" tasks that track the DAG of tuples for every spout tuple. When an acker sees that a DAG is complete, it sends a message to the spout task that created the spout tuple to ack the message. You can set the number of acker tasks for a topology in the topology configuration using Config.TOPOLOGY_ACKERS. Storm defaults TOPOLOGY_ACKERS to one task -- you will need to increase this number for topologies processing large amounts of messages.
问:when a tuple is acked in the topology, how does it know to which acker task to send that information?(选 acker task)—— 哈希 spout-tuple-id对应acker
答:Storm uses mod hashing to map a spout tuple id to an acker task. Since every tuple carries with it the spout tuple ids of all the trees they exist within, they know which acker tasks to communicate with.
问:how the acker tasks track which spout tasks are responsible for each spout tuple they're tracking.(选 spout task)—— taskid-tupleid的对应关系
答:When a spout task emits a new tuple, it simply sends a message to the appropriate acker telling it that its task id is responsible for that spout tuple. Then when an acker sees a tree has been completed, it knows to which task id to send the completion message.
问:Acker tasks do not track the tree of tuples explicitly. For large tuple trees with tens of thousands of nodes (or more), tracking all the tuple trees could overwhelm the memory used by the ackers. (tracking algorithm跟踪算法) —— a spout tuple id mapping (task id 到 ack val) \ 异或(XOR)
答:Instead, the ackers take a different strategy that only requires a fixed amount of space per spout tuple (about 20 bytes). This tracking algorithm is the key to how Storm works and is one of its major breakthroughs. An acker task stores a map from a spout tuple id to a pair of values. The first value is the task id that created the spout tuple which is used later on to send completion messages. The second value is a 64 bit number called the "ack val". The ack val is a representation of the state of the entire tuple tree, no matter how big or how small. It is simply the xor of all tuple ids that have been created and/or acked in the tree.
When an acker task sees that an "ack val" has become 0, then it knows that the tuple tree is completed.
Let's go over all the failure cases and see how in each case Storm avoids data loss:(失败场景,避免数据丢失)—— 超时、重新处理
- A tuple isn't acked because the task died: In this case the spout tuple ids at the root of the trees for the failed tuple will time out and be replayed.
- Acker task dies: In this case all the spout tuples the acker was tracking will time out and be replayed.
- Spout task dies: In this case the source that the spout talks to is responsible for replaying the messages. For example, queues like Kestrel and RabbitMQ will place all pending messages back on the queue when a client disconnects.
As you have seen, Storm's reliability mechanisms are completely distributed, scalable, and fault-tolerant.
6、调整可靠性:
Acker tasks are lightweight. You can track their performance through the Storm UI (component id "__acker").(据此调整acker数量)
If reliability isn't important to you -- that is, you don't care about losing tuples in failure situations -- then you can improve performance by not tracking the tuple tree for spout tuples. Not tracking a tuple tree halves the number of messages transferred since normally there's an ack message for every tuple in the tuple tree. Additionally, it requires fewer ids to be kept in each downstream tuple, reducing bandwidth usage.(减少带宽占用)
注:There are three ways to remove reliability.(去掉可靠性的三种方式)
The first is to set Config.TOPOLOGY_ACKERS to 0. In this case, Storm will call the ack
method on the spout immediately after the spout emits a tuple. The tuple tree won't be tracked.(设置ackers为0)
The second way is to remove reliability on a message by message basis. You can turn off tracking for an individual spout tuple by omitting a message id in the SpoutOutputCollector.emit
method.(发射tuple的时候不指定messageid)
Finally, if you don't care if a particular subset of the tuples downstream in the topology fail to be processed, you can emit them as unanchored tuples. Since they're not anchored to any spout tuples, they won't cause any spout tuples to fail if they aren't acked.(不anchor绑定,不跟踪)
Guaranteeing message processing —— 可靠的消息处理的更多相关文章
- Storm系列之二——Guaranteeing Message Processing
Storm保证每跳离开spout的消息都会被完全处理.本文介绍Storm是怎么保证每条消息都被完全处理并且作为用户该怎么做才能从Storm的可靠性保证受益. 1.什么叫消息被完全处理? 一个tuple ...
- Storm如何保证可靠的消息处理
作者:Jack47 PS:如果喜欢我写的文章,欢迎关注我的微信公众账号程序员杰克,两边的文章会同步,也可以添加我的RSS订阅源. 本文主要翻译自Storm官方文档Guaranteeing messag ...
- 【原】Storm 消息处理保障机制
Storm入门教程 1. Storm基础 Storm Storm主要特点 Storm基本概念 Storm调度器 Storm配置 Guaranteeing Message Processing(消息处理 ...
- Storm保证消息处理
Guaranteeing Message Processing Storm保证每一个tuple被完全处理.Strom中一个核心的机制是它提供了一种跟踪tuple血统的能力,它使用了一种十分有效的方式跟 ...
- Fault Tolerance —— Storm的故障容错性
——本文讲解了Storm故障容忍性(Fault-Tolerance)的设计细节:当Worker.节点.Nimbus或者Supervisor出现故障时是如何实现故障容忍性,以及Nimbus是否存在单点 ...
- 分布式流式处理框架:storm简介 + Storm术语解释
简介: Storm是一个免费开源.分布式.高容错的实时计算系统.它与其他大数据解决方案的不同之处在于它的处理方式.Hadoop 在本质上是一个批处理系统,数据被引入 Hadoop 文件系统 (HDFS ...
- 【原】Storm Tutorial
Storm入门教程 1. Storm基础 Storm Storm主要特点 Storm基本概念 Storm调度器 Storm配置 Guaranteeing Message Processing(消息处理 ...
- 【原】Storm基本概念
Storm入门教程 1. Storm基础 Storm Storm主要特点 Storm基本概念 Topologies Streams Spouts Bolts Stream groupings Reli ...
- 【原】Storm及特点
Storm入门教程 1. Storm基础 Storm Storm主要特点 Storm基本概念 Storm调度器 Storm配置 Guaranteeing Message Processing(消息处理 ...
随机推荐
- [OpenJudge 3066]随机序列
[OpenJudge 3066]随机序列 试题描述 Bob喜欢按照如下规则生成随机数: 第一步:令a[0] = S, 当n = 0: 第二步:a[n+1] = (a[n]*A+B)%P: 第三步:如果 ...
- [codeforces 528]A. Glass Carving
[codeforces 528]A. Glass Carving 试题描述 Leonid wants to become a glass carver (the person who creates ...
- Linux jstack命令详解
jstack用于打印出给定的java进程ID或core file或远程调试服务的Java堆栈信息. 如果是在64位机器上,需要指定选项"-J-d64",Windows的jstack ...
- try---catch异常处理
try { sc.Send(msg); return; } catch (Exception ex) { //AlertInfo("发送失败," + ex); return ; }
- c++关键字之#define typedef const
[#define] #define是预处理指令,在编译预处理时进行简单的替换,不作正确性检查. [typedef] typedef只是为了增加可读性而为标识符另起的新名称 在自己的作用域内给一个已经存 ...
- su成别的用户后仍以原来私钥访问远程机器
背景: 同步机和游戏服两台机都有个人用户账号和游戏账号xy1,游戏服设了xy1的ssh强制命令来受同步机的xy1控制.现在需要在同步机上用xy1进行一个控制游戏服的操作,该操作需要在同步机远程tail ...
- 【转】maven仓库快速镜像
本文转自:http://blog.csdn.net/zuoluoboy/article/details/20007819 国内连接maven官方的仓库更新依赖库,网速一般很慢,收集一些国内快速的mav ...
- 解决虚拟机 正在决定eht0 的ip信息失败 无链接-- 虚拟机上linux redhat 上网问题
对于虚拟机上,linux redhat上网的配置方式有三种 一.用setup命令进行配置(具体技巧可查setup命令的使用) 二.直接用 ifconfig eth0 ip地址进行配置 三.进入系统文 ...
- HDU 4334 Trouble (暴力)
Trouble Time Limit: 5000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Statu ...
- css3学习总结6--CSS3字体
使用自己需要的字体 在新的 @font-face 规则中,您必须首先定义字体的名称(比如 myFirstFont),然后指向该字体文件. 如需为 HTML 元素使用字体,请通过 font-family ...