http://poj.org/problem?id=1113

答案是凸包周长+半径为l的圆的周长...

证明?这是个坑..

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mkpii make_pair<int, int>
#define pdi pair<double, int>
#define mkpdi make_pair<double, int>
#define pli pair<ll, int>
#define mkpli make_pair<ll, int>
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=2005;
struct Pt { int x, y; };
int Cross(Pt &a, Pt &b, Pt &c) {
static int x1, x2, y1, y2;
x1=a.x-c.x; y1=a.y-c.y;
x2=b.x-c.x; y2=b.y-c.y;
return x1*y2-x2*y1;
}
int sqr(int x) { return x*x; }
double dis(Pt &a, Pt &b) { return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y)); }
bool cmp(const Pt &a, const Pt &b) { return a.x==b.x?a.y<b.y:a.x<b.x; }
void tu(Pt *p, Pt *s, int n, int &cnt) {
sort(p, p+n, cmp);
cnt=-1;
rep(i, n) {
while(cnt>0 && Cross(p[i], s[cnt], s[cnt-1])>=0) --cnt;
s[++cnt]=p[i];
}
int k=cnt;
for3(i, n-2, 0) {
while(cnt>k && Cross(p[i], s[cnt], s[cnt-1])>=0) --cnt;
s[++cnt]=p[i];
}
if(n>1) --cnt;
++cnt;
} int n, m, l;
Pt a[N], b[N];
int main() {
read(n); read(l);
rep(i, n) read(a[i].x), read(a[i].y);
tu(a, b, n, m);
b[m]=b[0];
double ans=2*l*acos(-1);
rep(i, m) ans+=dis(b[i], b[i+1]);
printf("%.0f\n", ans);
return 0;
}

  


Description

Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall. 

Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements.

The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.

Input

The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle.

Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.

Output

Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

Sample Input

9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200

Sample Output

1628

Hint

结果四舍五入就可以了

Source

【POJ】1113 Wall(凸包)的更多相关文章

  1. POJ 1113 Wall 凸包 裸

    LINK 题意:给出一个简单几何,问与其边距离长为L的几何图形的周长. 思路:求一个几何图形的最小外接几何,就是求凸包,距离为L相当于再多增加上一个圆的周长(因为只有四个角).看了黑书使用graham ...

  2. poj 1113 Wall 凸包的应用

    题目链接:poj 1113   单调链凸包小结 题解:本题用到的依然是凸包来求,最短的周长,只是多加了一个圆的长度而已,套用模板,就能搞定: AC代码: #include<iostream> ...

  3. POJ 1113 Wall 凸包求周长

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26286   Accepted: 8760 Description ...

  4. POJ 1113 - Wall 凸包

    此题为凸包问题模板题,题目中所给点均为整点,考虑到数据范围问题求norm()时先转换成double了,把norm()那句改成<vector>压栈即可求得凸包. 初次提交被坑得很惨,在GDB ...

  5. poj 1113 wall(凸包裸题)(记住求线段距离的时候是点积,点积是cos)

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 43274   Accepted: 14716 Descriptio ...

  6. POJ 1113 Wall【凸包周长】

    题目: http://poj.org/problem?id=1113 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  7. poj 1113:Wall(计算几何,求凸包周长)

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28462   Accepted: 9498 Description ...

  8. POJ 1113 Wall(凸包)

    [题目链接] http://poj.org/problem?id=1113 [题目大意] 给出一个城堡,要求求出距城堡距离大于L的地方建围墙将城堡围起来求所要围墙的长度 [题解] 画图易得答案为凸包的 ...

  9. POJ 1113 Wall 求凸包

    http://poj.org/problem?id=1113 不多说...凸包网上解法很多,这个是用graham的极角排序,也就是算导上的那个解法 其实其他方法随便乱搞都行...我只是测一下模板... ...

  10. POJ 1113 Wall 求凸包的两种方法

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 31199   Accepted: 10521 Descriptio ...

随机推荐

  1. HDOJ 1312 DFS&BFS

    Red and Black Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  2. Linux命令之exit - 退出当前shell【返回值状态】

    原文链接:http://codingstandards.iteye.com/blog/836625   (转载请注明出处) 用途说明 exit命令用于退出当前shell,在shell脚本中可以终止当前 ...

  3. Segment Tree Build I & II

    Segment Tree Build I The structure of Segment Tree is a binary tree which each node has two attribut ...

  4. 转数据库分库分表(sharding)系列(二) 全局主键生成策略

    本文将主要介绍一些常见的全局主键生成策略,然后重点介绍flickr使用的一种非常优秀的全局主键生成方案.关于分库分表(sharding)的拆分策略和实施细则,请参考该系列的前一篇文章:数据库分库分表( ...

  5. Java for LeetCode 031 Next Permutation

    Next Permutation Total Accepted: 33595 Total Submissions: 134095     Implement next permutation, whi ...

  6. Java for LeetCode 023 Merge k Sorted Lists

    Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. 解 ...

  7. Java与数据库类型对照表

     数据库类型  Java类型  INTEGER  int or java.lang.Integer  BIGINT  long or java.lang.Long  SMALLINT  short o ...

  8. Secure Socket Tunneling Protocol Service服务无法启动(win7)

    第一种方法: 1.确认一下服务都开启: Base Filtering Engine IKE and Authip IPsec Keying Module Ipsec Policy Agent Wind ...

  9. CentOS 6.5 下安装 Kibana5

    1. 导入Elastic PGP Key 执行命令 rpm --import https://artifacts.elastic.co/GPG-KEY-elasticsearch 2. 安装Kiban ...

  10. 《Java程序性能优化》学习笔记 JVM和并发优化

    第四章 并行程序优化 1.非阻塞同步避免了基于锁的同步的缺陷,无锁算法没有锁竞争带来的系统开销,也没有线程间频繁调度带来的开销.CAS算法:包含3个参数CAS(v,e,n).V表示要更新的变量,E表示 ...