BZOJ3560 : DZY Loves Math V
因为欧拉函数是非完全积性函数,所以可以考虑对每个数进行分解质因数,将每个质数的解乘起来即可。
对于一个质数$p$,设它在各个数中分别出现了$b_1,b_2,...b_n$次,那么由生成函数和欧拉函数的性质得,它对答案的贡献为:
\[(\prod_{i=1}^n\frac{p^{b_i+1}-1}{p-1}-1)\times\frac{p-1}{p}+1\]
#include<cstdio>
const int N=10000010,P=1000000007;
int n,m,i,j,a[100010],tot,p[N],v[N],cnt[N],r[N],f[N],ans=1;
inline void divide(int n){
tot=0;
while(n>1){
if(!cnt[v[n]])p[tot++]=v[n];
cnt[v[n]]++,n/=v[n];
}
for(int i=0;i<tot;i++){
int j=p[i],t=j;
while(cnt[j])t=1LL*t*j%P,cnt[j]--;
f[j]=1LL*(t-1)*r[j-1]%P*f[j]%P;
}
}
int main(){
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
if(a[i]>m)m=a[i];
}
for(r[0]=r[1]=1,i=2;i<=m;i++){
r[i]=(-1LL*r[P%i]*(P/i)%P+P)%P;
if(!v[i])p[tot++]=v[i]=i,f[i]=1;
for(j=0;j<tot;j++){
if(i*p[j]>m)break;
v[i*p[j]]=p[j];
if(i%p[j]==0)break;
}
}
for(i=1;i<=n;i++)divide(a[i]);
for(i=2;i<=m;i++)if(v[i]==i)ans=(1LL*(f[i]+P-1)*(i-1)%P*r[i]+1)%P*ans%P;
return printf("%d",ans),0;
}
BZOJ3560 : DZY Loves Math V的更多相关文章
- BZOJ3560 DZY Loves Math V 数论 快速幂
原文链接http://www.cnblogs.com/zhouzhendong/p/8111725.html UPD(2018-03-26):蒟蒻回来重新学数论了.更新了题解和代码.之前的怼到后面去了 ...
- BZOJ3560 DZY Loves Math V(欧拉函数)
对每个质因子分开计算再乘起来.使用类似生成函数的做法就很容易统计了. #include<iostream> #include<cstdio> #include<cmath ...
- [BZOJ3560]DZY Loves Math V(欧拉函数)
https://www.cnblogs.com/zwfymqz/p/9332753.html 由于欧拉函数是积性函数,可以用乘法分配律变成对每个质因子分开算最后乘起来.再由欧拉函数公式和分配律发现就是 ...
- 【BZOJ 3560】 3560: DZY Loves Math V (欧拉函数)
3560: DZY Loves Math V Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 241 Solved: 133 Description ...
- 【bzoj3560】DZY Loves Math V 欧拉函数
题目描述 给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). 输入 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. 输出 仅一行答案. 样例输入 3 ...
- 【BZOJ3960】DZY Loves Math V(数论)
题目: BZOJ3560 分析: orz跳瓜. 欧拉函数的公式: \[\phi(n)=n(\prod \frac{p_i-1}{p_i})\] 其中 \(p_i\) 取遍 \(n\) 的所有质因子. ...
- bzoj 3560 DZY Loves Math V - 线性筛 - 扩展欧几里得算法
给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). Input 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. Output 仅一行答案. Sampl ...
- bzoj DZY Loves Math V
Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 509 Solved: 284[Submit][Status][Discuss] Descriptio ...
- DZY Loves Math系列
link 好久没写数学题了,再这样下去吃枣药丸啊. 找一套应该还比较有意思的数学题来做. [bzoj3309]DZY Loves Math 简单推一下. \[\sum_{i=1}^n\sum_{j=1 ...
随机推荐
- (转)搞ACM的你伤不起
劳资六年前开始搞ACM啊!!!!!!!!!! 从此踏上了尼玛不归路啊!!!!!!!!!!!! 谁特么跟劳资讲算法是程序设计的核心啊!!!!!! 尼玛除了面试题就没见过用算法的地方啊!!!!!! 谁再跟 ...
- xenomai安装
一.Linux内核打实时补丁 1.将下载的Linux和xenomai安装包放在/usr/src目录下,并解压文件包,命令如下 tar xjf Linux-3.8.13.tar.bz2 tar x ...
- Html5 History API解析
浏览器前进与回退操作 在传统的浏览器中我们只能通过调用window.history对象的 forward() . back() 或 go(number|url) 方法来进行页面的前进.回退或跳转到某一 ...
- extern关键字总结
[本文链接] http://www.cnblogs.com/hellogiser/p/extern.html [extern 变量/函数] extern是C/C++语言中表明函数和全局变量作用范围(可 ...
- MongoDB副本集学习(二):基本测试与应用
简单副本集测试 这一节主要对上一节搭建的副本集做一些简单的测试. 我们首先进入primary节点(37017),并向test.test集合里插入10W条数据: . rs0:PRIMARY> ;i ...
- codeforces 486C. Palindrome Transformation 解题报告
题目链接:http://codeforces.com/problemset/problem/486/C 题目意思:给出一个含有 n 个小写字母的字符串 s 和指针初始化的位置(指向s的某个字符).可以 ...
- 两个文件去重的N种姿势
最近利用shell帮公司优化挖掘关键词的流程,用shell替代了多个环节的操作,极大提高了工作效率. shell在文本处理上确有极大优势,比如多文本合并.去重等,但是最近遇到了一个难搞的问题,即两个大 ...
- POJ 1006 - Biorhythms (中国剩余定理)
B - Biorhythms Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Subm ...
- 分页管理的JSTL实现
userMgr.jsp <%@ page language="java" import="java.util.*" pageEncoding=" ...
- July 28th, Week 31st Thursday, 2016
Time is a bird flying into eternity. 时间是一只永远在飞翔的鸟儿. Time waits for nobody. Vitality shows in not onl ...