题目描述

  金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件 附件

电脑 打印机,扫描仪

书柜 图书

书桌 台灯,文具

工作椅 无

  如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。

  设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为:v[j1]*w[j1]+v[j2]*w[j2]+ …+v[jk]*w[jk]。(其中*为乘号)请你帮助金明设计一个满足要求的购物单。

输入格式

  输入文件的第1行,为两个正整数,用一个空格隔开:

N m

其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。)

从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数

v p q

(其中v表示该物品的价格(v<10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)

输出格式

   输出文件只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值

(<200000)。

分析:有依赖的背包,考虑到每个主件最多只有两个附件,因此我们可以通过转化,把原问题转化为01背包问题来解决,在用01背包之前我们需要对输入数据进行处理,把每一种物品归类,即:把每一个主件和它的附件看作一类物品。处理好之后,我们就可以使用01背包算法了。在取某件物品时,我们只需要从以下四种方案中取最大的那种方案:只取主件、取主件+附件1、取主件+附件2、既主件+附件1+附件2‘

 #include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio> using namespace std;
int dp[][+];
int w[][],v[][];
int main()
{
int n,m;
while(scanf("%d%d", &n, &m) != EOF)
{
int c,p,q;
n = n / ; //都是10的整数,除以十,省空间
memset(w,-,sizeof(w));
for(int i = ; i <= m; i++)
{
scanf("%d%d%d",&c,&p,&q);
c = c / ;
if(q == )
{
w[i][q] = c;
v[i][q] = c * p;
}
else
{
if(w[q][] == -)
{
w[q][] = c;
v[q][] = c * p;
}
else
{
w[q][] = c;
v[q][] = c * p;
}
}
}
int t;
memset(dp, , sizeof(dp));
for(int i = ; i <= m; i++)
{
for(int j = ; j <= n; j++)
{
dp[i][j] = dp[i - ][j];//主件附件都不取 if(j >= w[i][]) //取主件
{
t = dp[i - ][j - w[i][]] + v[i][];
if(t > dp[i][j])
dp[i][j] = t;
}
if(j >= w[i][] + w[i][]) //取主件和附件1
{
t = dp[i - ][j - w[i][] - w[i][]] + v[i][] + v[i][];
if(t > dp[i][j])
dp[i][j] = t;
}
if(j >= w[i][] + w[i][]) //取主件和附件2
{
t = dp[i - ][j - w[i][] - w[i][]] + v[i][] + v[i][];
if(t >= dp[i][j])
dp[i][j] = t;
}
if(j >= w[i][] + w[i][] + w[i][]) //取主件、附件1和附件2
{
t = dp[i - ][j - w[i][] - w[i][] - w[i][]] + v[i][] + v[i][] + v[i][];
if(t >= dp[i][j])
dp[i][j] = t;
}
}
}
printf("%lld\n",dp[m][n] * );
}
return ;
}

RONOJ 6今明的预算方案(有依赖的背包)的更多相关文章

  1. 洛谷 P1064 金明的预算方案 (有依赖的0/1背包)

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”. ...

  2. 洛谷 P1064 金明的预算方案(有依赖的背包问题)

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”.今 ...

  3. 洛谷 P1064 金明的预算方案【DP/01背包-方案数】

    题目背景 uim神犇拿到了uoi的ra(镭牌)后,立刻拉着基友小A到了一家--餐馆,很低端的那种. uim指着墙上的价目表(太低级了没有菜单),说:"随便点". 题目描述 不过ui ...

  4. luoguP1064 金明的预算方案 (有依赖的背包问题)

    题目链接:https://www.luogu.org/problemnew/show/P1064 这是一个有依赖的背包问题,属于01背包的变式.这题还好,每个主件最多有2个附件,那么在对主件进行背包的 ...

  5. [codevs1155][KOJ0558][COJ0178][NOIP2006]金明的预算方案

    [codevs1155][KOJ0558][COJ0178][NOIP2006]金明的预算方案 试题描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴 ...

  6. NOIP2006 金明的预算方案

    1.             金明的预算方案 (budget.pas/c/cpp) [问题描述] 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈 ...

  7. 动态规划(背包问题):HRBUST 1377 金明的预算方案

    金明的预算方案 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行 ...

  8. Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划)

    Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划) Description 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己 ...

  9. [LuoguP1064][Noip2006]金明的预算方案

    金明的预算方案(Link) 题目描述 现在有\(M\)个物品,每一个物品有一个钱数和重要度,并且有一个\(Q\),如果\(Q = 0\),那么该物件可以单独购买,当\(Q != 0\)时,表示若要购买 ...

随机推荐

  1. rsyslog 日志统一搜集&message格式

        日志格式修改: http://jiechao2012.blog.51cto.com/3251753/1143762 http://yulei7633.blog.51cto.com/149275 ...

  2. salt进程查看插件&salt批量创建用户

    接受key 剔除主机   启动 salt-minion-d     软件包的安装   salt '*' state.sls init.env-init test=true   salt批量创建用户: ...

  3. C语言 文件操作12--文件加密

    //文件加密解密 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #include ...

  4. 为什么需要DTO(数据传输对象)

    DTO即数据传输对象.之前不明白有些框架中为什么要专门定义DTO来绑定表现层中的数据,为什么不能直接用实体模型呢,有了DTO同时还要维护DTO与Model之间的映射关系,多麻烦. 然后看了这篇文章中的 ...

  5. [iOS翻译]《iOS 7 Programming Pushing the Limits》系列:你可能不知道的Objective-C技巧

    简介: 如果你阅读这本书,你可能已经牢牢掌握iOS开发的基础,但这里有一些小特点和实践是许多开发者并不熟悉的,甚至有数年经验的开发者也是.在这一章里,你会学到一些很重要的开发技巧,但这仍远远不够,你还 ...

  6. Qt——树的搜索

    一.Qt中的树 Qt中树的实现有两种方式.第一种是使用Qt提供的QTreeWidget,很多函数都封装好,比较方便:另一种是通过QTreeView实现,设置它的数据模型,比如使用QStandardIt ...

  7. 2015国产犯罪传记《暴力天使》HD720P.泰语中字

    导演: 吴强编剧: 阮明玉主演: 张玉英 / 金理 / 至宝类型: 传记语言:泰语制片国家/地区: 中国大陆上映日期: 2016年3月25日片长: 92分钟又名: Huong Ga暴力天使的剧情简介 ...

  8. 流程引擎Activiti系列:在eclipse中搭建咖啡兔的Activiti演示工程中的各种坑及其解决方法(kft-activiti-demo-no-maven)

    近期在学习activiti,打算基于现有的框架,比如activiti-explorer或者咖啡兔的示例工程 kft-activiti-demo,在此基础上添加自己的业务流程,看看是否可以走通,以及这个 ...

  9. ubuntu16.04下安装jdk和android studio

    1首先要在JDK官网下载对应的Linux的JDK版本.进入该网站后,先选择Accept License Agreement然后即可下载.本人的Linux系统为ubuntukylin 16.04  64 ...

  10. 那么小伙伴么,问题来了,WPF中,控件的Width="*"在后台怎么写?

    用到DataGrid的列是自动生成的,但是大家都知道,WPF的DataGrid会在最后多出一列,通常的解决办法都是在最后一列的列宽上这样设置 Width="*",这样,最后一列多出 ...