【Linux开发】V4L2驱动框架分析学习
Author:CJOK
Contact:cjok.liao#gmail.com
SinaWeibo:@廖野cjok
1、概述
Video4Linux2是Linux内核中关于视频设备的内核驱动框架,为上层的访问底层的视频设备提供了统一的接口。凡是内核中的子系统都有抽象底层硬件的差异,为上层提供统一的接口和提取出公共代码避免代码冗余等好处。就像公司的老板一般都不会直接找底层的员工谈话,而是找部门经理了解情况,一个是因为底层屌丝人数多,意见各有不同,措辞也不准,部门经理会把情况汇总后再向上汇报;二个是老板时间宝贵。
V4L2支持三类设备:视频输入输出设备、VBI设备和radio设备(其实还支持更多类型的设备,暂不讨论),分别会在/dev目录下产生videoX、radioX和vbiX设备节点。我们常见的视频输入设备主要是摄像头,也是本文主要分析对象。下图V4L2在Linux系统中的结构图:
Linux系统中视频输入设备主要包括以下四个部分:
字符设备驱动程序核心:V4L2本身就是一个字符设备,具有字符设备所有的特性,暴露接口给用户空间;
V4L2驱动核心:主要是构建一个内核中标准视频设备驱动的框架,为视频操作提供统一的接口函数;
平台V4L2设备驱动:在V4L2框架下,根据平台自身的特性实现与平台相关的V4L2驱动部分,包括注册video_device和v4l2_dev。
具体的sensor驱动:主要上电、提供工作时钟、视频图像裁剪、流IO开启等,实现各种设备控制方法供上层调用并注册v4l2_subdev。
V4L2的核心源码位于drivers/media/v4l2-core,源码以实现的功能可以划分为四类:
核心模块实现:由v4l2-dev.c实现,主要作用申请字符主设备号、注册class和提供video device注册注销等相关函数;
V4L2框架:由v4l2-device.c、v4l2-subdev.c、v4l2-fh.c、v4l2-ctrls.c等文件实现,构建V4L2框架;
Videobuf管理:由videobuf2-core.c、videobuf2-dma-contig.c、videobuf2-dma-sg.c、videobuf2-memops.c、videobuf2-vmalloc.c、v4l2-mem2mem.c等文件实现,完成videobuffer的分配、管理和注销。
Ioctl框架:由v4l2-ioctl.c文件实现,构建V4L2ioctl的框架。
2、V4L2框架
结构体v4l2_device、video_device、v4l2_subdev和v4l2_fh是搭建框架的主要元素。下图是V4L2框架的结构图:
从上图V4L2框架是一个标准的树形结构,v4l2_device充当了父设备,通过链表把所有注册到其下的子设备管理起来,这些设备可以是GRABBER、VBI或RADIO。V4l2_subdev是子设备,v4l2_subdev结构体包含了对设备操作的ops和ctrls,这部分代码和硬件相关,需要驱动工程师根据硬件实现,像摄像头设备需要实现控制上下电、读取ID、饱和度、对比度和视频数据流打开关闭的接口函数。Video_device用于创建子设备节点,把操作设备的接口暴露给用户空间。V4l2_fh是每个子设备的文件句柄,在打开设备节点文件时设置,方便上层索引到v4l2_ctrl_handler,v4l2_ctrl_handler管理设备的ctrls,这些ctrls(摄像头设备)包括调节饱和度、对比度和白平衡等。
v4l2_device
v4l2_device在v4l2框架中充当所有v4l2_subdev的父设备,管理着注册在其下的子设备。以下是v4l2_device结构体原型(去掉了无关的成员):
struct v4l2_device {
structlist_head subdevs; //用链表管理注册的subdev
charname[V4L2_DEVICE_NAME_SIZE]; //device 名字
structkref ref; //引用计数
……
};
可以看出v4l2_device的主要作用是管理注册在其下的子设备,方便系统查找引用到。
V4l2_device的注册和注销:
int v4l2_device_register(struct device*dev,
struct v4l2_device *v4l2_dev)
static void v4l2_device_release(struct kref *ref)
V4l2_subdev
V4l2_subdev代表子设备,包含了子设备的相关属性和操作。先来看下结构体原型:
struct v4l2_subdev {
structv4l2_device *v4l2_dev; //指向父设备
//提供一些控制v4l2设备的接口
conststruct v4l2_subdev_ops *ops;
//向V4L2框架提供的接口函数
conststruct v4l2_subdev_internal_ops *internal_ops;
//subdev控制接口
structv4l2_ctrl_handler *ctrl_handler;
/* namemust be unique */
charname[V4L2_SUBDEV_NAME_SIZE];
/*subdev device node */
structvideo_device *devnode;
};
每个子设备驱动都需要实现一个v4l2_subdev结构体,v4l2_subdev可以内嵌到其它结构体中,也可以独立使用。结构体中包含了对子设备操作的成员v4l2_subdev_ops和v4l2_subdev_internal_ops。
v4l2_subdev_ops结构体原型如下:
struct v4l2_subdev_ops {
//视频设备通用的操作:初始化、加载FW、上电和RESET等
conststruct v4l2_subdev_core_ops *core;
//tuner特有的操作
conststruct v4l2_subdev_tuner_ops *tuner;
//audio特有的操作
conststruct v4l2_subdev_audio_ops *audio;
//视频设备的特有操作:设置帧率、裁剪图像、开关视频流等
conststructv4l2_subdev_video_ops
*video;
……
};
视频设备通常需要实现core和video成员,这两个OPS中的操作都是可选的,但是对于视频流设备video->s_stream(开启或关闭流IO)必须要实现。
v4l2_subdev_internal_ops结构体原型如下:
structv4l2_subdev_internal_ops {
//当subdev注册时被调用,读取IC的ID来进行识别
int(*registered)(struct v4l2_subdev *sd);
void(*unregistered)(struct v4l2_subdev *sd);
//当设备节点被打开时调用,通常会给设备上电和设置视频捕捉FMT
int(*open)(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh);
int(*close)(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh);
};
v4l2_subdev_internal_ops是向V4L2框架提供的接口,只能被V4L2框架层调用。在注册或打开子设备时,进行一些辅助性操作。
Subdev的注册和注销
当我们把v4l2_subdev需要实现的成员都已经实现,就可以调用以下函数把子设备注册到V4L2核心层:
int v4l2_device_register_subdev(struct v4l2_device*v4l2_dev, struct v4l2_subdev *sd)
当卸载子设备时,可以调用以下函数进行注销:
void v4l2_device_unregister_subdev(struct v4l2_subdev*sd)
video_device
video_device结构体用于在/dev目录下生成设备节点文件,把操作设备的接口暴露给用户空间。
struct video_device
{
conststruct v4l2_file_operations *fops; //V4L2设备操作集合
/*sysfs */
structdevice dev; /* v4l device */
structcdev *cdev; //字符设备
/* Seteither parent or v4l2_dev if your driver uses v4l2_device */
structdevice *parent; /* deviceparent */
structv4l2_device *v4l2_dev; /*v4l2_device parent */
/*Control handler associated with this device node. May be NULL. */
structv4l2_ctrl_handler *ctrl_handler;
/* 指向video buffer队列*/
structvb2_queue *queue;
intvfl_type; /* device type */
intminor; //次设备号
/* V4L2file handles */
spinlock_t fh_lock; /* Lock for allv4l2_fhs */
structlist_head fh_list; /* List ofstruct v4l2_fh */
/*ioctl回调函数集,提供file_operations中的ioctl调用 */
conststruct v4l2_ioctl_ops *ioctl_ops;
……
};
Video_device分配和释放,用于分配和释放video_device结构体:
struct video_device *video_device_alloc(void)
void video_device_release(struct video_device *vdev)
video_device注册和注销,实现video_device结构体的相关成员后,就可以调用下面的接口进行注册:
static inline int __must_checkvideo_register_device(struct video_device *vdev,
inttype, int nr)
void video_unregister_device(struct video_device*vdev);
vdev:需要注册和注销的video_device;
type:设备类型,包括VFL_TYPE_GRABBER、VFL_TYPE_VBI、VFL_TYPE_RADIO和VFL_TYPE_SUBDEV。
nr:设备节点名编号,如/dev/video[nr]。
v4l2_fh
v4l2_fh是用来保存子设备的特有操作方法,也就是下面要分析到的v4l2_ctrl_handler,内核提供一组v4l2_fh的操作方法,通常在打开设备节点时进行v4l2_fh注册。
初始化v4l2_fh,添加v4l2_ctrl_handler到v4l2_fh:
void v4l2_fh_init(struct v4l2_fh *fh, structvideo_device *vdev)
添加v4l2_fh到video_device,方便核心层调用到:
void v4l2_fh_add(struct v4l2_fh *fh)
v4l2_ctrl_handler
v4l2_ctrl_handler是用于保存子设备控制方法集的结构体,对于视频设备这些ctrls包括设置亮度、饱和度、对比度和清晰度等,用链表的方式来保存ctrls,可以通过v4l2_ctrl_new_std函数向链表添加ctrls。
struct v4l2_ctrl *v4l2_ctrl_new_std(structv4l2_ctrl_handler *hdl,
conststruct v4l2_ctrl_ops *ops,
u32id, s32 min, s32 max, u32 step, s32 def)
hdl是初始化好的v4l2_ctrl_handler结构体;
ops是v4l2_ctrl_ops结构体,包含ctrls的具体实现;
id是通过IOCTL的arg参数传过来的指令,定义在v4l2-controls.h文件;
min、max用来定义某操作对象的范围。如:
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BRIGHTNESS,-208, 127, 1, 0);
用户空间可以通过ioctl的VIDIOC_S_CTRL指令调用到v4l2_ctrl_handler,id透过arg参数传递。
3、ioctl框架
你可能观察到用户空间对V4L2设备的操作基本都是ioctl来实现的,V4L2设备都有大量可操作的功能(配置寄存器),所以V4L2的ioctl也是十分庞大的。它是一个怎样的框架,是怎么实现的呢?
Ioctl框架是由v4l2_ioctl.c文件实现,文件中定义结构体数组v4l2_ioctls,可以看做是ioctl指令和回调函数的关系表。用户空间调用系统调用ioctl,传递下来ioctl指令,然后通过查找此关系表找到对应回调函数。
以下是截取数组的两项:
IOCTL_INFO_FNC(VIDIOC_QUERYBUF, v4l_querybuf,v4l_print_buffer, INFO_FL_QUEUE | INFO_FL_CLEAR(v4l2_buffer,
length)),
IOCTL_INFO_STD(VIDIOC_G_FBUF,
vidioc_g_fbuf,v4l_print_framebuffer, 0),
内核提供两个宏(IOCTL_INFO_FNC和IOCTL_INFO_STD)来初始化结构体,参数依次是ioctl指令、回调函数或者v4l2_ioctl_ops结构体成员、debug函数、flag。如果回调函数是v4l2_ioctl_ops结构体成员,则使用IOCTL_INFO_STD;如果回调函数是v4l2_ioctl.c自己实现的,则使用IOCTL_INFO_FNC。
IOCTL调用的流程图如下:
用户空间通过打开/dev/目录下的设备节点,获取到文件的file结构体,通过系统调用ioctl把cmd和arg传入到内核。通过一系列的调用后最终会调用到__video_do_ioctl函数,然后通过cmd检索v4l2_ioctls[],判断是INFO_FL_STD还是INFO_FL_FUNC。如果是INFO_FL_STD会直接调用到视频设备驱动中video_device->v4l2_ioctl_ops函数集。如果是INFO_FL_FUNC会先调用到v4l2自己实现的标准回调函数,然后根据arg再调用到video_device->v4l2_ioctl_ops或v4l2_fh->v4l2_ctrl_handler函数集。
4、IO访问
V4L2支持三种不同IO访问方式(内核中还支持了其它的访问方式,暂不讨论):
read和write,是基本帧IO访问方式,通过read读取每一帧数据,数据需要在内核和用户之间拷贝,这种方式访问速度可能会非常慢;
内存映射缓冲区(V4L2_MEMORY_MMAP),是在内核空间开辟缓冲区,应用通过mmap()系统调用映射到用户地址空间。这些缓冲区可以是大而连续DMA缓冲区、通过vmalloc()创建的虚拟缓冲区,或者直接在设备的IO内存中开辟的缓冲区(如果硬件支持);
用户空间缓冲区(V4L2_MEMORY_USERPTR),是用户空间的应用中开辟缓冲区,用户与内核空间之间交换缓冲区指针。很明显,在这种情况下是不需要mmap()调用的,但驱动为有效的支持用户空间缓冲区,其工作将也会更困难。
Read和write方式属于帧IO访问方式,每一帧都要通过IO操作,需要用户和内核之间数据拷贝,而后两种是流IO访问方式,不需要内存拷贝,访问速度比较快。内存映射缓冲区访问方式是比较常用的方式。
内存映射缓存区方式
硬件层的数据流传输
Camerasensor捕捉到图像数据通过并口或MIPI传输到CAMIF(camera interface),CAMIF可以对图像数据进行调整(翻转、裁剪和格式转换等)。然后DMA控制器设置DMA通道请求AHB将图像数据传到分配好的DMA缓冲区。
待图像数据传输到DMA缓冲区之后,mmap操作把缓冲区映射到用户空间,应用就可以直接访问缓冲区的数据。
vb2_queue
为了使设备支持流IO这种方式,驱动需要实现struct vb2_queue,来看下这个结构体:
struct vb2_queue {
enumv4l2_buf_type type; //buffer类型
unsignedint io_modes; //访问IO的方式:mmap、userptr
etc
conststruct vb2_ops *ops; //buffer队列操作函数集合
conststruct vb2_mem_ops *mem_ops; //buffer memory操作集合
structvb2_buffer *bufs[VIDEO_MAX_FRAME]; //代表每个buffer
unsignedint num_buffers; //分配的buffer个数
……
};
Vb2_queue代表一个videobuffer队列,vb2_buffer是这个队列中的成员,vb2_mem_ops是缓冲内存的操作函数集,vb2_ops用来管理队列。
vb2_mem_ops
vb2_mem_ops包含了内存映射缓冲区、用户空间缓冲区的内存操作方法:
struct vb2_mem_ops {
void *(*alloc)(void *alloc_ctx, unsignedlong size); //分配视频缓存
void (*put)(void *buf_priv); //释放视频缓存
void *(*get_userptr)(void *alloc_ctx,unsigned long vaddr,
unsignedlong size, int write);
void (*put_userptr)(void *buf_priv); //释放用户空间视频缓冲区指针
//用于缓存同步
void (*prepare)(void *buf_priv);
void (*finish)(void *buf_priv);
void *(*vaddr)(void *buf_priv);
void *(*cookie)(void *buf_priv);
unsignedint (*num_users)(void *buf_priv); //返回当期在用户空间的buffer数
int (*mmap)(void *buf_priv, structvm_area_struct *vma); //把缓冲区映射到用户空间
};
这是一个相当庞大的结构体,这么多的结构体需要实现还不得累死,幸运的是内核都已经帮我们实现了。提供了三种类型的视频缓存区操作方法:连续的DMA缓冲区、集散的DMA缓冲区以及vmalloc创建的缓冲区,分别由videobuf2-dma-contig.c、videobuf2-dma-sg.c和videobuf-vmalloc.c文件实现,可以根据实际情况来使用。
vb2_ops是用来管理buffer队列的函数集合,包括队列和缓冲区初始化
struct vb2_ops {
//队列初始化
int(*queue_setup)(struct vb2_queue *q, const struct v4l2_format *fmt,
unsigned int *num_buffers, unsigned int*num_planes,
unsigned int sizes[], void *alloc_ctxs[]);
//释放和获取设备操作锁
void(*wait_prepare)(struct vb2_queue *q);
void(*wait_finish)(struct vb2_queue *q);
//对buffer的操作
int(*buf_init)(struct vb2_buffer *vb);
int(*buf_prepare)(struct vb2_buffer *vb);
int(*buf_finish)(struct vb2_buffer *vb);
void(*buf_cleanup)(struct vb2_buffer *vb);
//开始视频流
int(*start_streaming)(struct vb2_queue *q, unsigned int count);
//停止视频流
int(*stop_streaming)(struct vb2_queue *q);
//把VB传递给驱动
void(*buf_queue)(struct vb2_buffer *vb);
};
vb2_buffer是缓存队列的基本单位,内嵌在其中v4l2_buffer是核心成员。当开始流IO时,帧以v4l2_buffer的格式在应用和驱动之间传输。一个缓冲区可以有三种状态:
在驱动的传入队列中,驱动程序将会对此队列中的缓冲区进行处理,用户空间通过IOCTL:VIDIOC_QBUF把缓冲区放入到队列。对于一个视频捕获设备,传入队列中的缓冲区是空的,驱动会往其中填充数据;
在驱动的传出队列中,这些缓冲区已由驱动处理过,对于一个视频捕获设备,缓存区已经填充了视频数据,正等用户空间来认领;
用户空间状态的队列,已经通过IOCTL:VIDIOC_DQBUF传出到用户空间的缓冲区,此时缓冲区由用户空间拥有,驱动无法访问。
这三种状态的切换如下图所示:
v4l2_buffer结构如下:
struct v4l2_buffer {
__u32 index; //buffer 序号
__u32 type; //buffer类型
__u32 bytesused; 缓冲区已使用byte数
__u32 flags;
__u32 field;
structtimeval timestamp; //时间戳,代表帧捕获的时间
structv4l2_timecode timecode;
__u32 sequence;
/*memory location */
__u32 memory; //表示缓冲区是内存映射缓冲区还是用户空间缓冲区
union {
__u32 offset; //内核缓冲区的位置
unsignedlong userptr; //缓冲区的用户空间地址
structv4l2_plane *planes;
__s32 fd;
} m;
__u32 length; //缓冲区大小,单位byte
};
当用户空间拿到v4l2_buffer,可以获取到缓冲区的相关信息。Byteused是图像数据所占的字节数,如果是V4L2_MEMORY_MMAP方式,m.offset是内核空间图像数据存放的开始地址,会传递给mmap函数作为一个偏移,通过mmap映射返回一个缓冲区指针p,p+byteused是图像数据在进程的虚拟地址空间所占区域;如果是用户指针缓冲区的方式,可以获取的图像数据开始地址的指针m.userptr,userptr是一个用户空间的指针,userptr+byteused便是所占的虚拟地址空间,应用可以直接访问。
5、用户空间访问设备
下面通过内核映射缓冲区方式访问视频设备(capturedevice)的流程。
1> 打开设备文件
fd = open(dev_name, O_RDWR /* required */ | O_NONBLOCK, 0);
dev_name[/dev/videoX]
2> 查询设备支持的能力
Struct v4l2_capability cap;
ioctl(fd, VIDIOC_QUERYCAP, &cap)
3> 设置视频捕获格式
fmt.type= V4L2_BUF_TYPE_VIDEO_CAPTURE;
fmt.fmt.pix.width = 640;
fmt.fmt.pix.height = 480;
fmt.fmt.pix.pixelformat= V4L2_PIX_FMT_YUYV; //像素格式
fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;
ioctl(fd,VIDIOC_S_FMT, & fmt)
4> 向驱动申请缓冲区
Struct v4l2_requestbuffers req;
req.count= 4; //缓冲个数
req.type= V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory= V4L2_MEMORY_MMAP;
if(-1 == xioctl(fd, VIDIOC_REQBUFS, &req))
5> 获取每个缓冲区的信息,映射到用户空间
structbuffer {
void *start;
size_t length;
} *buffers;
buffers = calloc(req.count, sizeof(*buffers));
for (n_buffers= 0; n_buffers < req.count; ++n_buffers) {
struct v4l2_buffer buf;
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = n_buffers;
if (-1 ==xioctl(fd, VIDIOC_QUERYBUF, & buf))
errno_exit("VIDIOC_QUERYBUF");
buffers[n_buffers].length= buf.length;
buffers[n_buffers].start=
mmap(NULL /* start anywhere */,
buf.length,
PROT_READ | PROT_WRITE /* required */,
MAP_SHARED /* recommended */,
fd, buf.m.offset);
}
6> 把缓冲区放入到传入队列上,打开流IO,开始视频采集
for (i =0; i < n_buffers; ++i) {
struct v4l2_buffer buf;
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = i;
if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");
}
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == xioctl(fd, VIDIOC_STREAMON, & type))
7> 调用select监测文件描述符,缓冲区的数据是否填充好,然后对视频数据
for (;;) {
fd_set fds;
struct timeval tv;
int r;
FD_ZERO(&fds);
FD_SET(fd,&fds);
/* Timeout. */
tv.tv_sec = 2;
tv.tv_usec = 0;
//监测文件描述是否变化
r = select(fd + 1,& fds, NULL, NULL, & tv);
if (-1 == r) {
if (EINTR ==errno)
continue;
errno_exit("select");
}
if (0 == r) {
fprintf(stderr,"select timeout\n");
exit(EXIT_FAILURE);
}
//对视频数据进行处理
if (read_frame())
break;
/* EAGAIN - continueselect loop. */
}
8> 取出已经填充好的缓冲,获取到视频数据的大小,然后对数据进行处理。这里取出的缓冲只包含缓冲区的信息,并没有进行视频数据拷贝。
buf.type= V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory= V4L2_MEMORY_MMAP;
if (-1 ==ioctl(fd, VIDIOC_DQBUF, & buf)) //取出缓冲
errno_exit("VIDIOC_QBUF");
process_image(buffers[buf.index].start,buf.bytesused); //视频数据处理
if (-1 ==xioctl(fd, VIDIOC_QBUF, & buf)) //然后又放入到传入队列
errno_exit("VIDIOC_QBUF");
9> 停止视频采集
type =V4L2_BUF_TYPE_VIDEO_CAPTURE;
ioctl(fd,VIDIOC_STREAMOff, & type);
10> 关闭设备
Close(fd);
暂时分析到这里,后续在更新!
Reference:
http://lxr.linux.no/linux+v3.8.8/Documentation/video4linux/v4l2-framework.txt
http://lxr.linux.no/linux+v3.9/Documentation/DocBook/media/v4l/capture.c.xml
http://linuxtv.org/downloads/v4l-dvb-apis/vidioc-reqbufs.html
http://lwn.net/Articles/203924/
http://lxr.linux.no/linux+v3.9.1/drivers/media/platform/vivi.c
【Linux开发】V4L2驱动框架分析学习的更多相关文章
- 2.1 摄像头V4L2驱动框架分析
学习目标:学习V4L2(V4L2:vidio for linux version 2)摄像头驱动框架,分析vivi.c(虚拟视频硬件相关)驱动源码程序,总结V4L2硬件相关的驱动的步骤: 一.V4L ...
- Linux下USB驱动框架分析【转】
转自:http://blog.csdn.net/brucexu1978/article/details/17583407 版权声明:本文为博主原创文章,未经博主允许不得转载. http://www.c ...
- 一步步理解linux字符设备驱动框架(转)
/* *本文版权归于凌阳教育.如转载请注明 *原作者和原文链接 http://blog.csdn.net/edudriver/article/details/18354313* *特此说明并保留对其追 ...
- Linux字符设备驱动框架
字符设备是Linux三大设备之一(另外两种是块设备,网络设备),字符设备就是字节流形式通讯的I/O设备,绝大部分设备都是字符设备,常见的字符设备包括鼠标.键盘.显示器.串口等等,当我们执行ls -l ...
- linux设备驱动程序--串行通信驱动框架分析
linux 串行通信接口驱动框架 在学习linux内核驱动时,不论是看linux相关的书籍,又或者是直接看linux的源码,总是能在linux中看到各种各样的框架,linux内核极其庞杂,linux各 ...
- Linux 驱动框架---i2c驱动框架
i2c驱动在Linux通过一个周的学习后发现i2c总线的驱动框架还是和Linux整体的驱动框架是相同的,思想并不特殊比较复杂的内容如i2c核心的内容都是内核驱动框架实现完成的,今天我们暂时只分析驱动开 ...
- linux驱动基础系列--linux spi驱动框架分析
前言 主要是想对Linux 下spi驱动框架有一个整体的把控,因此会忽略某些细节,同时里面涉及到的一些驱动基础,比如平台驱动.设备模型等也不进行详细说明原理.如果有任何错误地方,请指出,谢谢! spi ...
- 宋宝华:Linux设备驱动框架里的设计模式之——模板方法(Template Method)
本文系转载,著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 作者: 宋宝华 来源: 微信公众号linux阅码场(id: linuxdev) 前言 <设计模式>这本经典 ...
- Linux 驱动框架---linux 设备
Linux 设备 Linux驱动中的三大主要基础成员主要是设备,总线和驱动.今天先来从设备开始分析先把设备相关的数据结构放到这里方便后面看到来查,其中有些进行了简单的注释. struct device ...
随机推荐
- scrapy 知乎关键字爬虫spider代码
以下是spider部分的代码.爬知乎是需要登录的,建议使用cookie就可以了,如果需要爬的数量预计不多,请不要使用过大的线程数量,否则会过快的被封杀,需要等十几个小时账号才能重新使用,比起损失的这十 ...
- Mysql中event事件的入门
Mysql中event事件的入门 主要涉及的知识点:mysql的存储过程.mysql的event事件调度. 参考资料: Qiao_Zhi的博客:[周期性执行事件]MySQL事件(Event)& ...
- Sublime Text2 常用快捷键总结
Ctrl+Tab 当前窗口中的标签页切换 Ctrl+Shift+D 复制光标所在整行,插入在该行之前 Ctrl+Shift+K 删除整行 Ctrl+Shift+/ 注释已选择内容 Ctrl+Shift ...
- 【CF896C】Willem, Chtholly and Seniorious
ODT模板题,ODT适合随机数据下具有维护区间推平操作的序列维护题目,时间复杂度较为玄学.. 代码如下 #include <bits/stdc++.h> #define pb push_b ...
- Linux使echo命令输出结果带颜色
echo -e "\033[30m 黑色字 \033[0m"echo -e "\033[31m 红色字 \033[0m"echo -e "\033[3 ...
- webpack多页应用
本文主要讲了webpack怎么搭建多页应用,熟悉下webpack的基本用法. 新建文件夹,目录结构如下: 然后 cd webpack-test npm init(根目录下创建了一个pakage.jso ...
- tf.stack( )和tf.unstack( )
相同点:他们都增加了矩阵的维度,而split()不改变维度! tf.stack()这是一个矩阵拼接的函数,tf.unstack()则是一个矩阵分解的函数 c是拼接,而d和e则是不同维度的分解
- 通过 PHP 生成 XML
如需使用 PHP 在服务器上生成 XML 响应,请使用下面的代码: <?php header("Content-type:text/xml"); echo "< ...
- 小程序获取Unionid
小程序获取用户Unionid,必须授权获取密文.但授权成功后不是永久的.除非关注了公众号或者App微信绑定了, 解决办法是通过code获取openid,然后用openid去数据库查对应的Unionid ...
- cocos2d 15款游戏源码
https://blog.csdn.net/jailman/article/details/78678972