E. Range Deleting

题意:给出一个序列,定义一个操作f(x,y)为删除序列中所有在[x,y]区间内的数。问能使剩下的数单调不减的操作f(x,y)的方案数是多少。

解法:不会做,思维跟不上,双指针也不熟练。思路和代码都是学习https://edwiv.com/archives/587这位巨佬的。

说下我的理解:我们考虑怎样的操作[l,r]才是合理的?很容易能想到有3个条件:①删除后剩下的数字[1,l-1]的位置是单调递增,②数字[r+1,x]的位置也是单调递增的,3 数字l-1的所有位置都要比r+1小。那么我们的任务就是预处理这个序列使得能快速判断这3个条件。

posmin[maxn] posmax[maxn]表示每个数下标的最小值和最大值
premax[maxn] sufmin[maxn]表示[1,i]/[i,x]范围内的数出现的下标值的最大值/最小值
precan[maxn] sufcan[maxn]表示[1,i]是否合法,[i,x]是否合法

然后判断[l,r]是否是一个合理操作的条件就是:precan[l-1] && sufcan[r+1] && (premax[l-1]<sufmin[r+1]);  //这分别对应上面的3个条件

那么到这里我们就能够O(1)快速判断某个操作是否合法,接下来就是统计答案。当然不能n^2统计会超时,这里用到双指针的技巧,枚举左端点l,右端点r由上一个左端点l-1的r继承而来,之后再实际判断移动得到当前左端点l的应该右端点r,就可以统计答案贡献就是x-r+1咯。这里的正确性是基于:[l,r]是合理的那么l+1的r必定大于l的r,左右端点是同步递增的。

 #include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1e6+;
int n,x,a[N];
int posmin[N],posmax[N],premax[N],sufmin[N];
bool precan[N],sufcan[N]; bool check(int l,int r) { //判断删去区间[l,r]后是否得到合理答案
return precan[l-] && sufcan[r+] && (premax[l-]<sufmin[r+]);
} int main()
{
cin>>n>>x;
memset(posmin,0x3f,sizeof(posmin));
memset(posmax,,sizeof(posmax));
for (int i=;i<=n;i++) {
scanf("%d",&a[i]);
posmin[a[i]]=min(posmin[a[i]],i);
posmax[a[i]]=max(posmax[a[i]],i);
}
for (int i=;i<=x;i++) premax[i]=max(premax[i-],posmax[i]);
sufmin[x+]=n+; for (int i=x;i;i--) sufmin[i]=min(sufmin[i+],posmin[i]);
memset(precan,,sizeof(precan)); precan[]=;
for (int i=;i<=x;i++) precan[i]=precan[i-]&&(posmin[i]>premax[i-]);
memset(sufcan,,sizeof(sufcan)); sufcan[x+]=;
for (int i=x;i;i--) sufcan[i]=sufcan[i+]&&(posmax[i]<sufmin[i+]); LL ans=;
int l=,r=; //双指针
for (;l<=x;l++) { //左指针遍历
if (l>r) r=l;
while (r<x && !check(l,r)) r++; //移动右指针
if (check(l,r)) ans+=(x-r+); //累加左指针为l时候的贡献为(x-r+1)
}
cout<<ans<<endl;
return ;
}

F. Scalar Queries

解法:虽然能猜到是算排名贡献乘以数字得到答案,但是还是没做出来qwq。参考https://www.cnblogs.com/carcar/p/10877964.html这位巨佬的。

讲一下自己的理解:容易发现其实答案就是算d[i]*a[i]。这个d[i]系数其实就是所有包含a[i]这个数的区间的a[i]的排名总和。那么怎么样才能快速算得这个d[i]?我们从贡献这个角度思考:

在a[i]的左边,只有a[j]<a[i](j<i)的时候a[j]对a[i]才会有提升排名的作用,并且这个提升一个排名的效果在所有包含了(a[j]和a[i])的区间都有效。

同理的,在a[i]的右边,只有a[j]<a[i](j<i)的时候才有提升排名的作用,并且在所有包含a[j]和a[i]的区间有效。

然后对于a[i]自己也是同理,自己给自己提升了一个排名。

那么我们怎么快速算 a[j]<a[i] 且所有包含了a[j] a[i]的区间个数呢?以a[i]左边为例分析,仔细观察发现其实区间个数就是j*(n-i+1),对于每个a[j]这个因子j是不会改变的,然后对于a[i]这个因子(n-i+1)也是不会改变的。我们要做的就是快速统计所有a[j]<a[i]的因子j的总和,嗯?这不就是树状数组。对,我们从左到右扫一遍利用树状数组统计,从右往左扫一遍,统计得出d[i]之后此题就解决了。

 #include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=5e5+;
const int P=1e9+;
int n,m,a[N],b[N],rk[N];
LL d[N]; LL sum[N];
void update(int x,int v) {
for (;x<=n;x+=x&-x) sum[x]+=v,sum[x]%=P;
}
LL query(int x) {
LL ret=;
for (;x;x-=x&-x) ret+=sum[x],ret%=P;
return ret;
} int main()
{
cin>>n;
for (int i=;i<=n;i++) scanf("%d",&a[i]),b[i]=a[i];
sort(b+,b+n+);
for (int i=;i<=n;i++) rk[i]=lower_bound(b+,b+n+,a[i])-b; for (int i=;i<=n;i++) { //计算[1,i-1]区间的贡献
d[i]=(d[i]+query(rk[i]-)*(n-i+)%P)%P;
update(rk[i],i);
}
for (int i=;i<=n;i++) d[i]=(d[i]+(LL)i*(n-i+)%P)%P; //计算[i,i]的贡献
memset(sum,,sizeof(sum));
for (int i=n;i;i--) { //计算[i+1,n]的贡献
d[i]=(d[i]+query(rk[i]-)*(i)%P)%P;
update(rk[i],n-i+);
} LL ans=;
for (int i=;i<=n;i++) ans=(ans+a[i]*d[i]%P)%P;
cout<<ans<<endl;
return ;
}

Educational Codeforces Round 65 E,F的更多相关文章

  1. Educational Codeforces Round 65 (Rated for Div. 2)题解

    Educational Codeforces Round 65 (Rated for Div. 2)题解 题目链接 A. Telephone Number 水题,代码如下: Code #include ...

  2. codeforces Educational Codeforces Round 24 (A~F)

    题目链接:http://codeforces.com/contest/818 A. Diplomas and Certificates 题解:水题 #include <iostream> ...

  3. Educational Codeforces Round 65 (Rated for Div. 2) D. Bicolored RBS

    链接:https://codeforces.com/contest/1167/problem/D 题意: A string is called bracket sequence if it does ...

  4. Educational Codeforces Round 65 (Rated for Div. 2) C. News Distribution

    链接:https://codeforces.com/contest/1167/problem/C 题意: In some social network, there are nn users comm ...

  5. Educational Codeforces Round 65 (Rated for Div. 2) B. Lost Numbers

    链接:https://codeforces.com/contest/1167/problem/B 题意: This is an interactive problem. Remember to flu ...

  6. Educational Codeforces Round 65 (Rated for Div. 2) A. Telephone Number

    链接:https://codeforces.com/contest/1167/problem/A 题意: A telephone number is a sequence of exactly 11  ...

  7. Educational Codeforces Round 65 (Div. 2)

    A.前n-10个有8即合法. #include<cstdio> #include<cstring> #include<iostream> #include<a ...

  8. [ Educational Codeforces Round 65 (Rated for Div. 2)][二分]

    https://codeforc.es/contest/1167/problem/E E. Range Deleting time limit per test 2 seconds memory li ...

  9. Educational Codeforces Round 65 (Rated for Div. 2)

    A:签到. #include<bits/stdc++.h> using namespace std; #define ll long long #define inf 1000000010 ...

随机推荐

  1. create-react-app按需引入antd-mobile

    1.引入 react-app-rewired 并修改 package.json 里的启动配置: npm i react-app-rewired@2.0.2-next.0 // 需要安装低版本 否则np ...

  2. 【8.0.0_r4】AMS分析(十七)(ActivityManagerService.java下)

    代码位于frameworks/base/services/core/java/com/android/server/am/,一共有七十个文件. Java源码位于package com.android. ...

  3. 03 spring security执行流程分析

    spring security主要是依赖一系列的Filter来实现权限验证的,责任链设计模式是跑不了的.下面简单记录一下spring操作这些Filter的过程. 1. WebSecurityConfi ...

  4. flutter网格布局之GridView组件

    前面总结了使用ListView来实现列表,但是,有的时候,数据量很大,需要使用矩阵方式排列才能更清晰的展示数据,在flutter中,可以使用网格列表组件GridView来实现这个布局. GridVie ...

  5. CTF | bugku | 字符?正则?

    做题链接 一个详细讲正则的网址1 一个详细讲正则的网址2 代码如下 <?php highlight_file('2.php'); $key='KEY{********************** ...

  6. sql优化工具SQLAdvisor的安装

    原文地址:https://www.cnblogs.com/beliveli/articles/6541936.html 本机安装包路径: D:\share\src\linux-mysql\sqlAdv ...

  7. Redis的高级特性一览

    更多内容,欢迎关注微信公众号:全菜工程师小辉.公众号回复关键词,领取免费学习资料. 应用场景 缓存系统:用于缓解数据库的高并发压力 计数器:使用Redis原子操作,用于社交网络的转发数,评论数,粉丝数 ...

  8. 做一个简单的scrapy爬虫

    前言: 做一个简单的scrapy爬虫,带大家认识一下创建scrapy的大致流程.我们就抓取扇贝上的单词书,python的高频词汇. 步骤: 一,新建一个工程scrapy_shanbay 二,在工程中中 ...

  9. java并发编程笔记(九)——多线程并发最佳实践

    java并发编程笔记(九)--多线程并发最佳实践 使用本地变量 使用不可变类 最小化锁的作用域范围 使用线程池Executor,而不是直接new Thread执行 宁可使用同步也不要使用线程的wait ...

  10. javascript:void()的理解

    href="javascript:void(0);"本身没有任何危害啊,表示这是一个空链接.如果想在网页上用a标签,但又不想产生页面实际跳转动作,就可以这么做.下面是一些用法对比: ...