UVA 1642 MagicalGCD 题解
本题是一道区间最大公约数的模板题;
如果N^2暴力的话当然会超时,所以我们要发掘出区间gcd的特点;
设gcd[i]表示区间[1,i]的最大公约数;
我们可以发现,从一个点i到1之间的所有区间的gcd均满足gcd[j]=GCD(gcd[j-1],a[j]);
由于gcd的性质,所以gcd[]是单调不增的;
接着,我们似乎发现了一个更神奇的事情,g[]中不同的值最多有log(max(a[i]))个;
换句话说,虽然g[]数组的长度为n,但在以上两个条件的限制下,最多仅仅有logA个值发生改变的地方;
所以我们遍历一遍右端点,处理出每个i到j(0<=i<=j)的区间的最大公约数;
注意,这并不再是n^2了,因为从i到j在long long 范围内最多有64个不同的值,所以我们只要遍历一遍这些点i就可以知道所有的0<=i<=j到j的区间的gcd;
神奇吧?
综上所述,求出所有区间的gcd仅仅需要nlogA的时间,完全可以切掉这道题;
#include <bits/stdc++.h>
#pragma GCC optimize(3)
#define ll long long
using namespace std;
int n;
long long a[];
long long gcd(long long a,long long b)
{
if(b==) return a;
return gcd(b,a%b);
}
vector<pair<long long ,long long> > vec[]; //第一维是值,第二维是在枚举右端点所用的点的编号
int main ()
{
cin>>n;
for(register int i=;i<=n;i++){
scanf("%lld",&a[i]);
}
for(register int i=;i<=n;i++){
long long x=a[i],y=i;
vec[i].push_back(make_pair(x,y));
for(register int j=;j<vec[i-].size();j++){
if(x==) break;
long long GCD=gcd(x,vec[i-][j].first);
if(GCD!=x){
x=GCD;
y=vec[i-][j].second;
vec[i].push_back(make_pair(x,y));
}
}
}
long long ans=;
for(register int i=;i<=n;i++){
int w=vec[i].size()-;
for(register int j=;j<w;j++){
pair<long long,long long> p1=vec[i][j];
pair<long long,long long> p2=vec[i][j+];
ans=max(ans,p1.first*(i-p2.second)); //注意,i-p2.second却不加1的原因是因为该区间其实是[p2.second,i-1];
}
ans=max(ans,vec[i][vec[i].size()-].first*i);
}
cout<<ans;
}
UVA 1642 MagicalGCD 题解的更多相关文章
- Magical GCD UVA 1642 利用约数个数少来优化 给定n个数,求使连续的一段序列的所有数的最大公约数*数的数量的值最大。输出这个最大值。
/** 题目:Magical GCD UVA 1642 链接:https://vjudge.net/problem/UVA-1642 题意:给定n个数,求使连续的一段序列的所有数的最大公约数*数的数量 ...
- uva 1642 Magical GCD
很经典的题目,愣是没做出来.. 题意:给出一个序列,求一子序列,满足其GCD(子序列)* length(子序列)最大. 题解: 类似单调队列的思想,每次将前面所得的最大公约数与当前数进行GCD,若GC ...
- UVa 1642 - Magical GCD(数论)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 1642 Magical GCD(经典gcd)
题意:给你n(n<=100000)个正整数,求一个连续子序列使序列的所有元素的最大公约数与个数乘积最大 题解:我们知道一个原理就是对于n+1个数与n个数的最大公约数要么相等,要么减小并且减小至少 ...
- UVA - 1642 Magical GCD 数学
Magical GCD The Magical GCD of a nonempty sequence of positive integer ...
- UVa 1642 (综合) Magical GCD
题意: 给出一个数列,求一个连续的子序列,使得MGCD(i, j) = 该子序列的长度(j-i+1) × 子序列的gcd 最大,并输出这个最大值. 分析: 感觉可能要用优先队列,但貌似也用不上. 但 ...
- UVA 1642 Magical GCD(gcd的性质,递推)
分析:对于区间[i,j],枚举j. 固定j以后,剩下的要比较M_gcd(k,j) = gcd(ak,...,aj)*(j-k+1)的大小, i≤k≤j. 此时M_gcd(k,j)可以看成一个二元组(g ...
- UVa 1642 Magical GCD (暴力+数论)
题意:给出一个长度在 100 000 以内的正整数序列,大小不超过 10^ 12.求一个连续子序列,使得在所有的连续子序列中, 它们的GCD值乘以它们的长度最大. 析:暴力枚举右端点,然后在枚举左端点 ...
- 紫书 例题 10-29 UVa 1642(最优连续子序列)
这类求最优连续子序列的题一般是枚举右端点,然后根据题目要求更新左端点, 一般是nlogn,右端点枚举是n,左端点是logn 难点在于如何更新左端点 用一些例子试一下可以发现 每次加进一个新元素的时候 ...
随机推荐
- socket认证客户端链接合法性
服务器端: #_*_coding:utf-8_*_ __author__ = 'Linhaifeng' from socket import * import hmac,os secret_key=b ...
- 手写一个类加载器demo
1.什么是类加载器? 2.加载方式 ClassLoader类加载器,主要的作用是将class文件加载到jvm虚拟机中.jvm启动的时候,并不是一次性加载所有的类,而是根据需要动态去加载类,主要分为隐式 ...
- 51 Nod 1073 约瑟夫环
1073 约瑟夫环 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 N个人坐成一个圆环(编号为1 - N),从第1个人开始报数,数到K的人出列,后面的人 ...
- 彩色图像--色彩空间 CMY(K)空间
学习DIP第63天 转载请标明本文出处:***http://blog.csdn.net/tonyshengtan ***,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发:http ...
- sh_08_格式化字符串
sh_08_格式化字符串 info_tuple = ("小明", 21, 1.85) # 格式化字符串后面的 `()` 本质上就是元组 print("%s 年龄是 %d ...
- [CSP-S模拟测试]:求和(数学)
题目传送门(内部题107) 输入格式 一行五个正整数$x_1,y_1,x_2,y_2,m$ 输出格式 输出一个整数,为所求的答案对$m$取模后的结果. 样例 样例输入: 2 1 5 3 10007 样 ...
- vue下实现input实现图片上传,压缩,拼接以及旋转
背景 作为一名前端工作人员,相信大家在开发系统的时候,经常有遇到需要这么一种需求,就是需要为用户保存上传的图片,很多小白遇到这个问题的时候,都会虎躯一震,以为会是一个棘手的问题,当你读完这篇文章的时候 ...
- C++入门经典-例4.4-循环嵌套之求n的阶乘
1:代码如下: // 4.4.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> using ...
- js判断某个字符串是否包含另一个字符串
1.indexOf():推荐,可返回某个指定的字符串值在字符串中首次出现的位置.如果要检索的字符串值没有出现,则该方法返回 -1. var str = "123" console. ...
- 剑指offer32----之字形打印一颗二叉树
题目 请实现一个函数按照之字形打印二叉树,即第一行按照从左到右的顺序打印,第二层按照从右至左的顺序打印,第三行按照从左到右的顺序打印,其他行以此类推. 思路 在这里我们如果单纯的使用队列去弄的话,会很 ...