/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_CORE_MATRIX_OPERATIONS_HPP__
#define __OPENCV_CORE_MATRIX_OPERATIONS_HPP__

#ifndef SKIP_INCLUDES
#include <limits.h>
#include <string.h>
#endif // SKIP_INCLUDES

#ifdef __cplusplus

namespace cv
{

//////////////////////////////// Mat ////////////////////////////////

inline void Mat::initEmpty()
{
flags = MAGIC_VAL;
dims = rows = cols = 0;
data = datastart = dataend = datalimit = 0;
refcount = 0;
allocator = 0;
}

inline Mat::Mat() : size(&rows)
{
initEmpty();
}

inline Mat::Mat(int _rows, int _cols, int _type) : size(&rows)
{
initEmpty();
create(_rows, _cols, _type);
}

inline Mat::Mat(int _rows, int _cols, int _type, const Scalar& _s) : size(&rows)
{
initEmpty();
create(_rows, _cols, _type);
*this = _s;
}

inline Mat::Mat(Size _sz, int _type) : size(&rows)
{
initEmpty();
create( _sz.height, _sz.width, _type );
}

inline Mat::Mat(Size _sz, int _type, const Scalar& _s) : size(&rows)
{
initEmpty();
create(_sz.height, _sz.width, _type);
*this = _s;
}

inline Mat::Mat(int _dims, const int* _sz, int _type) : size(&rows)
{
initEmpty();
create(_dims, _sz, _type);
}

inline Mat::Mat(int _dims, const int* _sz, int _type, const Scalar& _s) : size(&rows)
{
initEmpty();
create(_dims, _sz, _type);
*this = _s;
}

inline Mat::Mat(const Mat& m)
: flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), data(m.data),
refcount(m.refcount), datastart(m.datastart), dataend(m.dataend),
datalimit(m.datalimit), allocator(m.allocator), size(&rows)
{
if( refcount )
CV_XADD(refcount, 1);
if( m.dims <= 2 )
{
step[0] = m.step[0]; step[1] = m.step[1];
}
else
{
dims = 0;
copySize(m);
}
}

inline Mat::Mat(int _rows, int _cols, int _type, void* _data, size_t _step)
: flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_rows), cols(_cols),
data((uchar*)_data), refcount(0), datastart((uchar*)_data), dataend(0),
datalimit(0), allocator(0), size(&rows)
{
size_t esz = CV_ELEM_SIZE(_type), minstep = cols*esz;
if( _step == AUTO_STEP )
{
_step = minstep;
flags |= CONTINUOUS_FLAG;
}
else
{
if( rows == 1 ) _step = minstep;
CV_DbgAssert( _step >= minstep );
flags |= _step == minstep ? CONTINUOUS_FLAG : 0;
}
step[0] = _step; step[1] = esz;
datalimit = datastart + _step*rows;
dataend = datalimit - _step + minstep;
}

inline Mat::Mat(Size _sz, int _type, void* _data, size_t _step)
: flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_sz.height), cols(_sz.width),
data((uchar*)_data), refcount(0), datastart((uchar*)_data), dataend(0),
datalimit(0), allocator(0), size(&rows)
{
size_t esz = CV_ELEM_SIZE(_type), minstep = cols*esz;
if( _step == AUTO_STEP )
{
_step = minstep;
flags |= CONTINUOUS_FLAG;
}
else
{
if( rows == 1 ) _step = minstep;
CV_DbgAssert( _step >= minstep );
flags |= _step == minstep ? CONTINUOUS_FLAG : 0;
}
step[0] = _step; step[1] = esz;
datalimit = datastart + _step*rows;
dataend = datalimit - _step + minstep;
}

template<typename _Tp> inline Mat::Mat(const vector<_Tp>& vec, bool copyData)
: flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG),
dims(2), rows((int)vec.size()), cols(1), data(0), refcount(0),
datastart(0), dataend(0), allocator(0), size(&rows)
{
if(vec.empty())
return;
if( !copyData )
{
step[0] = step[1] = sizeof(_Tp);
data = datastart = (uchar*)&vec[0];
datalimit = dataend = datastart + rows*step[0];
}
else
Mat((int)vec.size(), 1, DataType<_Tp>::type, (uchar*)&vec[0]).copyTo(*this);
}

template<typename _Tp, int n> inline Mat::Mat(const Vec<_Tp, n>& vec, bool copyData)
: flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG),
dims(2), rows(n), cols(1), data(0), refcount(0),
datastart(0), dataend(0), allocator(0), size(&rows)
{
if( !copyData )
{
step[0] = step[1] = sizeof(_Tp);
data = datastart = (uchar*)vec.val;
datalimit = dataend = datastart + rows*step[0];
}
else
Mat(n, 1, DataType<_Tp>::type, (void*)vec.val).copyTo(*this);
}

template<typename _Tp, int m, int n> inline Mat::Mat(const Matx<_Tp,m,n>& M, bool copyData)
: flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG),
dims(2), rows(m), cols(n), data(0), refcount(0),
datastart(0), dataend(0), allocator(0), size(&rows)
{
if( !copyData )
{
step[0] = cols*sizeof(_Tp);
step[1] = sizeof(_Tp);
data = datastart = (uchar*)M.val;
datalimit = dataend = datastart + rows*step[0];
}
else
Mat(m, n, DataType<_Tp>::type, (uchar*)M.val).copyTo(*this);
}

template<typename _Tp> inline Mat::Mat(const Point_<_Tp>& pt, bool copyData)
: flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG),
dims(2), rows(2), cols(1), data(0), refcount(0),
datastart(0), dataend(0), allocator(0), size(&rows)
{
if( !copyData )
{
step[0] = step[1] = sizeof(_Tp);
data = datastart = (uchar*)&pt.x;
datalimit = dataend = datastart + rows*step[0];
}
else
{
create(2, 1, DataType<_Tp>::type);
((_Tp*)data)[0] = pt.x;
((_Tp*)data)[1] = pt.y;
}
}

template<typename _Tp> inline Mat::Mat(const Point3_<_Tp>& pt, bool copyData)
: flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG),
dims(2), rows(3), cols(1), data(0), refcount(0),
datastart(0), dataend(0), allocator(0), size(&rows)
{
if( !copyData )
{
step[0] = step[1] = sizeof(_Tp);
data = datastart = (uchar*)&pt.x;
datalimit = dataend = datastart + rows*step[0];
}
else
{
create(3, 1, DataType<_Tp>::type);
((_Tp*)data)[0] = pt.x;
((_Tp*)data)[1] = pt.y;
((_Tp*)data)[2] = pt.z;
}
}

template<typename _Tp> inline Mat::Mat(const MatCommaInitializer_<_Tp>& commaInitializer)
: flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG),
dims(0), rows(0), cols(0), data(0), refcount(0),
datastart(0), dataend(0), allocator(0), size(&rows)
{
*this = *commaInitializer;
}

inline Mat::~Mat()
{
release();
if( step.p != step.buf )
fastFree(step.p);
}

inline Mat& Mat::operator = (const Mat& m)
{
if( this != &m )
{
if( m.refcount )
CV_XADD(m.refcount, 1);
release();
flags = m.flags;
if( dims <= 2 && m.dims <= 2 )
{
dims = m.dims;
rows = m.rows;
cols = m.cols;
step[0] = m.step[0];
step[1] = m.step[1];
}
else
copySize(m);
data = m.data;
datastart = m.datastart;
dataend = m.dataend;
datalimit = m.datalimit;
refcount = m.refcount;
allocator = m.allocator;
}
return *this;
}

inline Mat Mat::row(int y) const { return Mat(*this, Range(y, y+1), Range::all()); }
inline Mat Mat::col(int x) const { return Mat(*this, Range::all(), Range(x, x+1)); }
inline Mat Mat::rowRange(int startrow, int endrow) const
{ return Mat(*this, Range(startrow, endrow), Range::all()); }
inline Mat Mat::rowRange(const Range& r) const
{ return Mat(*this, r, Range::all()); }
inline Mat Mat::colRange(int startcol, int endcol) const
{ return Mat(*this, Range::all(), Range(startcol, endcol)); }
inline Mat Mat::colRange(const Range& r) const
{ return Mat(*this, Range::all(), r); }

inline Mat Mat::diag(const Mat& d)
{
CV_Assert( d.cols == 1 || d.rows == 1 );
int len = d.rows + d.cols - 1;
Mat m(len, len, d.type(), Scalar(0)), md = m.diag();
if( d.cols == 1 )
d.copyTo(md);
else
transpose(d, md);
return m;
}

inline Mat Mat::clone() const
{
Mat m;
copyTo(m);
return m;
}

inline void Mat::assignTo( Mat& m, int _type ) const
{
if( _type < 0 )
m = *this;
else
convertTo(m, _type);
}

inline void Mat::create(int _rows, int _cols, int _type)
{
_type &= TYPE_MASK;
if( dims <= 2 && rows == _rows && cols == _cols && type() == _type && data )
return;
int sz[] = {_rows, _cols};
create(2, sz, _type);
}

inline void Mat::create(Size _sz, int _type)
{
create(_sz.height, _sz.width, _type);
}

inline void Mat::addref()
{ if( refcount ) CV_XADD(refcount, 1); }

inline void Mat::release()
{
if( refcount && CV_XADD(refcount, -1) == 1 )
deallocate();
data = datastart = dataend = datalimit = 0;
for(int i = 0; i < dims; i++)
size.p[i] = 0;
refcount = 0;
}

inline Mat Mat::operator()( Range _rowRange, Range _colRange ) const
{
return Mat(*this, _rowRange, _colRange);
}

inline Mat Mat::operator()( const Rect& roi ) const
{ return Mat(*this, roi); }

inline Mat Mat::operator()(const Range* ranges) const
{
return Mat(*this, ranges);
}

inline Mat::operator CvMat() const
{
CV_DbgAssert(dims <= 2);
CvMat m = cvMat(rows, dims == 1 ? 1 : cols, type(), data);
m.step = (int)step[0];
m.type = (m.type & ~CONTINUOUS_FLAG) | (flags & CONTINUOUS_FLAG);
return m;
}

inline bool Mat::isContinuous() const { return (flags & CONTINUOUS_FLAG) != 0; }
inline bool Mat::isSubmatrix() const { return (flags & SUBMATRIX_FLAG) != 0; }
inline size_t Mat::elemSize() const { return dims > 0 ? step.p[dims-1] : 0; }
inline size_t Mat::elemSize1() const { return CV_ELEM_SIZE1(flags); }
inline int Mat::type() const { return CV_MAT_TYPE(flags); }
inline int Mat::depth() const { return CV_MAT_DEPTH(flags); }
inline int Mat::channels() const { return CV_MAT_CN(flags); }
inline size_t Mat::step1(int i) const { return step.p[i]/elemSize1(); }
inline bool Mat::empty() const { return data == 0 || total() == 0; }
inline size_t Mat::total() const
{
if( dims <= 2 )
return (size_t)rows*cols;
size_t p = 1;
for( int i = 0; i < dims; i++ )
p *= size[i];
return p;
}

inline uchar* Mat::ptr(int y)
{
CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) );
return data + step.p[0]*y;
}

inline const uchar* Mat::ptr(int y) const
{
CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) );
return data + step.p[0]*y;
}

template<typename _Tp> inline _Tp* Mat::ptr(int y)
{
CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) );
return (_Tp*)(data + step.p[0]*y);
}

template<typename _Tp> inline const _Tp* Mat::ptr(int y) const
{
CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) );
return (const _Tp*)(data + step.p[0]*y);
}

inline uchar* Mat::ptr(int i0, int i1)
{
CV_DbgAssert( dims >= 2 && data &&
(unsigned)i0 < (unsigned)size.p[0] &&
(unsigned)i1 < (unsigned)size.p[1] );
return data + i0*step.p[0] + i1*step.p[1];
}

inline const uchar* Mat::ptr(int i0, int i1) const
{
CV_DbgAssert( dims >= 2 && data &&
(unsigned)i0 < (unsigned)size.p[0] &&
(unsigned)i1 < (unsigned)size.p[1] );
return data + i0*step.p[0] + i1*step.p[1];
}

template<typename _Tp> inline _Tp* Mat::ptr(int i0, int i1)
{
CV_DbgAssert( dims >= 2 && data &&
(unsigned)i0 < (unsigned)size.p[0] &&
(unsigned)i1 < (unsigned)size.p[1] );
return (_Tp*)(data + i0*step.p[0] + i1*step.p[1]);
}

template<typename _Tp> inline const _Tp* Mat::ptr(int i0, int i1) const
{
CV_DbgAssert( dims >= 2 && data &&
(unsigned)i0 < (unsigned)size.p[0] &&
(unsigned)i1 < (unsigned)size.p[1] );
return (const _Tp*)(data + i0*step.p[0] + i1*step.p[1]);
}

inline uchar* Mat::ptr(int i0, int i1, int i2)
{
CV_DbgAssert( dims >= 3 && data &&
(unsigned)i0 < (unsigned)size.p[0] &&
(unsigned)i1 < (unsigned)size.p[1] &&
(unsigned)i2 < (unsigned)size.p[2] );
return data + i0*step.p[0] + i1*step.p[1] + i2*step.p[2];
}

inline const uchar* Mat::ptr(int i0, int i1, int i2) const
{
CV_DbgAssert( dims >= 3 && data &&
(unsigned)i0 < (unsigned)size.p[0] &&
(unsigned)i1 < (unsigned)size.p[1] &&
(unsigned)i2 < (unsigned)size.p[2] );
return data + i0*step.p[0] + i1*step.p[1] + i2*step.p[2];
}

template<typename _Tp> inline _Tp* Mat::ptr(int i0, int i1, int i2)
{
CV_DbgAssert( dims >= 3 && data &&
(unsigned)i0 < (unsigned)size.p[0] &&
(unsigned)i1 < (unsigned)size.p[1] &&
(unsigned)i2 < (unsigned)size.p[2] );
return (_Tp*)(data + i0*step.p[0] + i1*step.p[1] + i2*step.p[2]);
}

template<typename _Tp> inline const _Tp* Mat::ptr(int i0, int i1, int i2) const
{
CV_DbgAssert( dims >= 3 && data &&
(unsigned)i0 < (unsigned)size.p[0] &&
(unsigned)i1 < (unsigned)size.p[1] &&
(unsigned)i2 < (unsigned)size.p[2] );
return (const _Tp*)(data + i0*step.p[0] + i1*step.p[1] + i2*step.p[2]);
}

inline uchar* Mat::ptr(const int* idx)
{
int i, d = dims;
uchar* p = data;
CV_DbgAssert( d >= 1 && p );
for( i = 0; i < d; i++ )
{
CV_DbgAssert( (unsigned)idx[i] < (unsigned)size.p[i] );
p += idx[i]*step.p[i];
}
return p;
}

inline const uchar* Mat::ptr(const int* idx) const
{
int i, d = dims;
uchar* p = data;
CV_DbgAssert( d >= 1 && p );
for( i = 0; i < d; i++ )
{
CV_DbgAssert( (unsigned)idx[i] < (unsigned)size.p[i] );
p += idx[i]*step.p[i];
}
return p;
}

template<typename _Tp> inline _Tp& Mat::at(int i0, int i1)
{
CV_DbgAssert( dims <= 2 && data && (unsigned)i0 < (unsigned)size.p[0] &&
(unsigned)(i1*DataType<_Tp>::channels) < (unsigned)(size.p[1]*channels()) &&
CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1());
return ((_Tp*)(data + step.p[0]*i0))[i1];
}

template<typename _Tp> inline const _Tp& Mat::at(int i0, int i1) const
{
CV_DbgAssert( dims <= 2 && data && (unsigned)i0 < (unsigned)size.p[0] &&
(unsigned)(i1*DataType<_Tp>::channels) < (unsigned)(size.p[1]*channels()) &&
CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1());
return ((const _Tp*)(data + step.p[0]*i0))[i1];
}

template<typename _Tp> inline _Tp& Mat::at(Point pt)
{
CV_DbgAssert( dims <= 2 && data && (unsigned)pt.y < (unsigned)size.p[0] &&
(unsigned)(pt.x*DataType<_Tp>::channels) < (unsigned)(size.p[1]*channels()) &&
CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1());
return ((_Tp*)(data + step.p[0]*pt.y))[pt.x];
}

template<typename _Tp> inline const _Tp& Mat::at(Point pt) const
{
CV_DbgAssert( dims <= 2 && data && (unsigned)pt.y < (unsigned)size.p[0] &&
(unsigned)(pt.x*DataType<_Tp>::channels) < (unsigned)(size.p[1]*channels()) &&
CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1());
return ((const _Tp*)(data + step.p[0]*pt.y))[pt.x];
}

template<typename _Tp> inline _Tp& Mat::at(int i0)
{
CV_DbgAssert( dims <= 2 && data &&
(unsigned)i0 < (unsigned)(size.p[0]*size.p[1]) &&
elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) );
if( isContinuous() || size.p[0] == 1 )
return ((_Tp*)data)[i0];
if( size.p[1] == 1 )
return *(_Tp*)(data + step.p[0]*i0);
int i = i0/cols, j = i0 - i*cols;
return ((_Tp*)(data + step.p[0]*i))[j];
}

template<typename _Tp> inline const _Tp& Mat::at(int i0) const
{
CV_DbgAssert( dims <= 2 && data &&
(unsigned)i0 < (unsigned)(size.p[0]*size.p[1]) &&
elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) );
if( isContinuous() || size.p[0] == 1 )
return ((const _Tp*)data)[i0];
if( size.p[1] == 1 )
return *(const _Tp*)(data + step.p[0]*i0);
int i = i0/cols, j = i0 - i*cols;
return ((const _Tp*)(data + step.p[0]*i))[j];
}

template<typename _Tp> inline _Tp& Mat::at(int i0, int i1, int i2)
{
CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) );
return *(_Tp*)ptr(i0, i1, i2);
}
template<typename _Tp> inline const _Tp& Mat::at(int i0, int i1, int i2) const
{
CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) );
return *(const _Tp*)ptr(i0, i1, i2);
}
template<typename _Tp> inline _Tp& Mat::at(const int* idx)
{
CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) );
return *(_Tp*)ptr(idx);
}
template<typename _Tp> inline const _Tp& Mat::at(const int* idx) const
{
CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) );
return *(const _Tp*)ptr(idx);
}
template<typename _Tp, int n> _Tp& Mat::at(const Vec<int, n>& idx)
{
CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) );
return *(_Tp*)ptr(idx.val);
}
template<typename _Tp, int n> inline const _Tp& Mat::at(const Vec<int, n>& idx) const
{
CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) );
return *(const _Tp*)ptr(idx.val);
}

template<typename _Tp> inline MatConstIterator_<_Tp> Mat::begin() const
{
CV_DbgAssert( elemSize() == sizeof(_Tp) );
return MatConstIterator_<_Tp>((const Mat_<_Tp>*)this);
}

template<typename _Tp> inline MatConstIterator_<_Tp> Mat::end() const
{
CV_DbgAssert( elemSize() == sizeof(_Tp) );
MatConstIterator_<_Tp> it((const Mat_<_Tp>*)this);
it += total();
return it;
}

template<typename _Tp> inline MatIterator_<_Tp> Mat::begin()
{
CV_DbgAssert( elemSize() == sizeof(_Tp) );
return MatIterator_<_Tp>((Mat_<_Tp>*)this);
}

template<typename _Tp> inline MatIterator_<_Tp> Mat::end()
{
CV_DbgAssert( elemSize() == sizeof(_Tp) );
MatIterator_<_Tp> it((Mat_<_Tp>*)this);
it += total();
return it;
}

template<typename _Tp> inline Mat::operator vector<_Tp>() const
{
vector<_Tp> v;
copyTo(v);
return v;
}

template<typename _Tp, int n> inline Mat::operator Vec<_Tp, n>() const
{
CV_Assert( data && dims <= 2 && (rows == 1 || cols == 1) &&
rows + cols - 1 == n && channels() == 1 );

if( isContinuous() && type() == DataType<_Tp>::type )
return Vec<_Tp, n>((_Tp*)data);
Vec<_Tp, n> v; Mat tmp(rows, cols, DataType<_Tp>::type, v.val);
convertTo(tmp, tmp.type());
return v;
}

template<typename _Tp, int m, int n> inline Mat::operator Matx<_Tp, m, n>() const
{
CV_Assert( data && dims <= 2 && rows == m && cols == n && channels() == 1 );

if( isContinuous() && type() == DataType<_Tp>::type )
return Matx<_Tp, m, n>((_Tp*)data);
Matx<_Tp, m, n> mtx; Mat tmp(rows, cols, DataType<_Tp>::type, mtx.val);
convertTo(tmp, tmp.type());
return mtx;
}

template<typename _Tp> inline void Mat::push_back(const _Tp& elem)
{
if( !data )
{
CV_Assert((type()==0) || (DataType<_Tp>::type == type()));

*this = Mat(1, 1, DataType<_Tp>::type, (void*)&elem).clone();
return;
}
CV_Assert(DataType<_Tp>::type == type() && cols == 1
/* && dims == 2 (cols == 1 implies dims == 2) */);
uchar* tmp = dataend + step[0];
if( !isSubmatrix() && isContinuous() && tmp <= datalimit )
{
*(_Tp*)(data + (size.p[0]++)*step.p[0]) = elem;
dataend = tmp;
}
else
push_back_(&elem);
}

template<typename _Tp> inline void Mat::push_back(const Mat_<_Tp>& m)
{
push_back((const Mat&)m);
}

inline Mat::MSize::MSize(int* _p) : p(_p) {}
inline Size Mat::MSize::operator()() const
{
CV_DbgAssert(p[-1] <= 2);
return Size(p[1], p[0]);
}
inline const int& Mat::MSize::operator[](int i) const { return p[i]; }
inline int& Mat::MSize::operator[](int i) { return p[i]; }
inline Mat::MSize::operator const int*() const { return p; }

inline bool Mat::MSize::operator == (const MSize& sz) const
{
int d = p[-1], dsz = sz.p[-1];
if( d != dsz )
return false;
if( d == 2 )
return p[0] == sz.p[0] && p[1] == sz.p[1];

for( int i = 0; i < d; i++ )
if( p[i] != sz.p[i] )
return false;
return true;
}

inline bool Mat::MSize::operator != (const MSize& sz) const
{
return !(*this == sz);
}

inline Mat::MStep::MStep() { p = buf; p[0] = p[1] = 0; }
inline Mat::MStep::MStep(size_t s) { p = buf; p[0] = s; p[1] = 0; }
inline const size_t& Mat::MStep::operator[](int i) const { return p[i]; }
inline size_t& Mat::MStep::operator[](int i) { return p[i]; }
inline Mat::MStep::operator size_t() const
{
CV_DbgAssert( p == buf );
return buf[0];
}
inline Mat::MStep& Mat::MStep::operator = (size_t s)
{
CV_DbgAssert( p == buf );
buf[0] = s;
return *this;
}

static inline Mat cvarrToMatND(const CvArr* arr, bool copyData=false, int coiMode=0)
{
return cvarrToMat(arr, copyData, true, coiMode);
}

///////////////////////////////////////////// SVD //////////////////////////////////////////////////////

inline SVD::SVD() {}
inline SVD::SVD( InputArray m, int flags ) { operator ()(m, flags); }
inline void SVD::solveZ( InputArray m, OutputArray _dst )
{
Mat mtx = m.getMat();
SVD svd(mtx, (mtx.rows >= mtx.cols ? 0 : SVD::FULL_UV));
_dst.create(svd.vt.cols, 1, svd.vt.type());
Mat dst = _dst.getMat();
svd.vt.row(svd.vt.rows-1).reshape(1,svd.vt.cols).copyTo(dst);
}

template<typename _Tp, int m, int n, int nm> inline void
SVD::compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt )
{
assert( nm == MIN(m, n));
Mat _a(a, false), _u(u, false), _w(w, false), _vt(vt, false);
SVD::compute(_a, _w, _u, _vt);
CV_Assert(_w.data == (uchar*)&w.val[0] && _u.data == (uchar*)&u.val[0] && _vt.data == (uchar*)&vt.val[0]);
}

template<typename _Tp, int m, int n, int nm> inline void
SVD::compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w )
{
assert( nm == MIN(m, n));
Mat _a(a, false), _w(w, false);
SVD::compute(_a, _w);
CV_Assert(_w.data == (uchar*)&w.val[0]);
}

template<typename _Tp, int m, int n, int nm, int nb> inline void
SVD::backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u,
const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs,
Matx<_Tp, n, nb>& dst )
{
assert( nm == MIN(m, n));
Mat _u(u, false), _w(w, false), _vt(vt, false), _rhs(rhs, false), _dst(dst, false);
SVD::backSubst(_w, _u, _vt, _rhs, _dst);
CV_Assert(_dst.data == (uchar*)&dst.val[0]);
}

///////////////////////////////// Mat_<_Tp> ////////////////////////////////////

template<typename _Tp> inline Mat_<_Tp>::Mat_()
: Mat() { flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; }

template<typename _Tp> inline Mat_<_Tp>::Mat_(int _rows, int _cols)
: Mat(_rows, _cols, DataType<_Tp>::type) {}

template<typename _Tp> inline Mat_<_Tp>::Mat_(int _rows, int _cols, const _Tp& value)
: Mat(_rows, _cols, DataType<_Tp>::type) { *this = value; }

template<typename _Tp> inline Mat_<_Tp>::Mat_(Size _sz)
: Mat(_sz.height, _sz.width, DataType<_Tp>::type) {}

template<typename _Tp> inline Mat_<_Tp>::Mat_(Size _sz, const _Tp& value)
: Mat(_sz.height, _sz.width, DataType<_Tp>::type) { *this = value; }

template<typename _Tp> inline Mat_<_Tp>::Mat_(int _dims, const int* _sz)
: Mat(_dims, _sz, DataType<_Tp>::type) {}

template<typename _Tp> inline Mat_<_Tp>::Mat_(int _dims, const int* _sz, const _Tp& _s)
: Mat(_dims, _sz, DataType<_Tp>::type, Scalar(_s)) {}

template<typename _Tp> inline Mat_<_Tp>::Mat_(const Mat_<_Tp>& m, const Range* ranges)
: Mat(m, ranges) {}

template<typename _Tp> inline Mat_<_Tp>::Mat_(const Mat& m)
: Mat() { flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; *this = m; }

template<typename _Tp> inline Mat_<_Tp>::Mat_(const Mat_& m)
: Mat(m) {}

template<typename _Tp> inline Mat_<_Tp>::Mat_(int _rows, int _cols, _Tp* _data, size_t steps)
: Mat(_rows, _cols, DataType<_Tp>::type, _data, steps) {}

template<typename _Tp> inline Mat_<_Tp>::Mat_(const Mat_& m, const Range& _rowRange, const Range& _colRange)
: Mat(m, _rowRange, _colRange) {}

template<typename _Tp> inline Mat_<_Tp>::Mat_(const Mat_& m, const Rect& roi)
: Mat(m, roi) {}

template<typename _Tp> template<int n> inline
Mat_<_Tp>::Mat_(const Vec<typename DataType<_Tp>::channel_type, n>& vec, bool copyData)
: Mat(n/DataType<_Tp>::channels, 1, DataType<_Tp>::type, (void*)&vec)
{
CV_Assert(n%DataType<_Tp>::channels == 0);
if( copyData )
*this = clone();
}

template<typename _Tp> template<int m, int n> inline
Mat_<_Tp>::Mat_(const Matx<typename DataType<_Tp>::channel_type,m,n>& M, bool copyData)
: Mat(m, n/DataType<_Tp>::channels, DataType<_Tp>::type, (void*)&M)
{
CV_Assert(n % DataType<_Tp>::channels == 0);
if( copyData )
*this = clone();
}

template<typename _Tp> inline Mat_<_Tp>::Mat_(const Point_<typename DataType<_Tp>::channel_type>& pt, bool copyData)
: Mat(2/DataType<_Tp>::channels, 1, DataType<_Tp>::type, (void*)&pt)
{
CV_Assert(2 % DataType<_Tp>::channels == 0);
if( copyData )
*this = clone();
}

template<typename _Tp> inline Mat_<_Tp>::Mat_(const Point3_<typename DataType<_Tp>::channel_type>& pt, bool copyData)
: Mat(3/DataType<_Tp>::channels, 1, DataType<_Tp>::type, (void*)&pt)
{
CV_Assert(3 % DataType<_Tp>::channels == 0);
if( copyData )
*this = clone();
}

template<typename _Tp> inline Mat_<_Tp>::Mat_(const MatCommaInitializer_<_Tp>& commaInitializer)
: Mat(commaInitializer) {}

template<typename _Tp> inline Mat_<_Tp>::Mat_(const vector<_Tp>& vec, bool copyData)
: Mat(vec, copyData) {}

template<typename _Tp> inline Mat_<_Tp>& Mat_<_Tp>::operator = (const Mat& m)
{
if( DataType<_Tp>::type == m.type() )
{
Mat::operator = (m);
return *this;
}
if( DataType<_Tp>::depth == m.depth() )
{
return (*this = m.reshape(DataType<_Tp>::channels, m.dims, 0));
}
CV_DbgAssert(DataType<_Tp>::channels == m.channels());
m.convertTo(*this, type());
return *this;
}

template<typename _Tp> inline Mat_<_Tp>& Mat_<_Tp>::operator = (const Mat_& m)
{
Mat::operator=(m);
return *this;
}

template<typename _Tp> inline Mat_<_Tp>& Mat_<_Tp>::operator = (const _Tp& s)
{
typedef typename DataType<_Tp>::vec_type VT;
Mat::operator=(Scalar((const VT&)s));
return *this;
}

template<typename _Tp> inline void Mat_<_Tp>::create(int _rows, int _cols)
{
Mat::create(_rows, _cols, DataType<_Tp>::type);
}

template<typename _Tp> inline void Mat_<_Tp>::create(Size _sz)
{
Mat::create(_sz, DataType<_Tp>::type);
}

template<typename _Tp> inline void Mat_<_Tp>::create(int _dims, const int* _sz)
{
Mat::create(_dims, _sz, DataType<_Tp>::type);
}

template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::cross(const Mat_& m) const
{ return Mat_<_Tp>(Mat::cross(m)); }

template<typename _Tp> template<typename T2> inline Mat_<_Tp>::operator Mat_<T2>() const
{ return Mat_<T2>(*this); }

template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::row(int y) const
{ return Mat_(*this, Range(y, y+1), Range::all()); }
template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::col(int x) const
{ return Mat_(*this, Range::all(), Range(x, x+1)); }
template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::diag(int d) const
{ return Mat_(Mat::diag(d)); }
template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::clone() const
{ return Mat_(Mat::clone()); }

template<typename _Tp> inline size_t Mat_<_Tp>::elemSize() const
{
CV_DbgAssert( Mat::elemSize() == sizeof(_Tp) );
return sizeof(_Tp);
}

template<typename _Tp> inline size_t Mat_<_Tp>::elemSize1() const
{
CV_DbgAssert( Mat::elemSize1() == sizeof(_Tp)/DataType<_Tp>::channels );
return sizeof(_Tp)/DataType<_Tp>::channels;
}
template<typename _Tp> inline int Mat_<_Tp>::type() const
{
CV_DbgAssert( Mat::type() == DataType<_Tp>::type );
return DataType<_Tp>::type;
}
template<typename _Tp> inline int Mat_<_Tp>::depth() const
{
CV_DbgAssert( Mat::depth() == DataType<_Tp>::depth );
return DataType<_Tp>::depth;
}
template<typename _Tp> inline int Mat_<_Tp>::channels() const
{
CV_DbgAssert( Mat::channels() == DataType<_Tp>::channels );
return DataType<_Tp>::channels;
}
template<typename _Tp> inline size_t Mat_<_Tp>::stepT(int i) const { return step.p[i]/elemSize(); }
template<typename _Tp> inline size_t Mat_<_Tp>::step1(int i) const { return step.p[i]/elemSize1(); }

template<typename _Tp> inline Mat_<_Tp>& Mat_<_Tp>::adjustROI( int dtop, int dbottom, int dleft, int dright )
{ return (Mat_<_Tp>&)(Mat::adjustROI(dtop, dbottom, dleft, dright)); }

template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::operator()( const Range& _rowRange, const Range& _colRange ) const
{ return Mat_<_Tp>(*this, _rowRange, _colRange); }

template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::operator()( const Rect& roi ) const
{ return Mat_<_Tp>(*this, roi); }

template<typename _Tp> inline Mat_<_Tp> Mat_<_Tp>::operator()( const Range* ranges ) const
{ return Mat_<_Tp>(*this, ranges); }

template<typename _Tp> inline _Tp* Mat_<_Tp>::operator [](int y)
{ return (_Tp*)ptr(y); }
template<typename _Tp> inline const _Tp* Mat_<_Tp>::operator [](int y) const
{ return (const _Tp*)ptr(y); }

template<typename _Tp> inline _Tp& Mat_<_Tp>::operator ()(int i0, int i1)
{
CV_DbgAssert( dims <= 2 && data &&
(unsigned)i0 < (unsigned)size.p[0] &&
(unsigned)i1 < (unsigned)size.p[1] &&
type() == DataType<_Tp>::type );
return ((_Tp*)(data + step.p[0]*i0))[i1];
}

template<typename _Tp> inline const _Tp& Mat_<_Tp>::operator ()(int i0, int i1) const
{
CV_DbgAssert( dims <= 2 && data &&
(unsigned)i0 < (unsigned)size.p[0] &&
(unsigned)i1 < (unsigned)size.p[1] &&
type() == DataType<_Tp>::type );
return ((const _Tp*)(data + step.p[0]*i0))[i1];
}

template<typename _Tp> inline _Tp& Mat_<_Tp>::operator ()(Point pt)
{
CV_DbgAssert( dims <= 2 && data &&
(unsigned)pt.y < (unsigned)size.p[0] &&
(unsigned)pt.x < (unsigned)size.p[1] &&
type() == DataType<_Tp>::type );
return ((_Tp*)(data + step.p[0]*pt.y))[pt.x];
}

template<typename _Tp> inline const _Tp& Mat_<_Tp>::operator ()(Point pt) const
{
CV_DbgAssert( dims <= 2 && data &&
(unsigned)pt.y < (unsigned)size.p[0] &&
(unsigned)pt.x < (unsigned)size.p[1] &&
type() == DataType<_Tp>::type );
return ((const _Tp*)(data + step.p[0]*pt.y))[pt.x];
}

template<typename _Tp> inline _Tp& Mat_<_Tp>::operator ()(const int* idx)
{
return Mat::at<_Tp>(idx);
}

template<typename _Tp> inline const _Tp& Mat_<_Tp>::operator ()(const int* idx) const
{
return Mat::at<_Tp>(idx);
}

template<typename _Tp> template<int n> inline _Tp& Mat_<_Tp>::operator ()(const Vec<int, n>& idx)
{
return Mat::at<_Tp>(idx);
}

template<typename _Tp> template<int n> inline const _Tp& Mat_<_Tp>::operator ()(const Vec<int, n>& idx) const
{
return Mat::at<_Tp>(idx);
}

template<typename _Tp> inline _Tp& Mat_<_Tp>::operator ()(int i0)
{
return this->at<_Tp>(i0);
}

template<typename _Tp> inline const _Tp& Mat_<_Tp>::operator ()(int i0) const
{
return this->at<_Tp>(i0);
}

template<typename _Tp> inline _Tp& Mat_<_Tp>::operator ()(int i0, int i1, int i2)
{
return this->at<_Tp>(i0, i1, i2);
}

template<typename _Tp> inline const _Tp& Mat_<_Tp>::operator ()(int i0, int i1, int i2) const
{
return this->at<_Tp>(i0, i1, i2);
}

template<typename _Tp> inline Mat_<_Tp>::operator vector<_Tp>() const
{
vector<_Tp> v;
copyTo(v);
return v;
}

template<typename _Tp> template<int n> inline Mat_<_Tp>::operator Vec<typename DataType<_Tp>::channel_type, n>() const
{
CV_Assert(n % DataType<_Tp>::channels == 0);
return this->Mat::operator Vec<typename DataType<_Tp>::channel_type, n>();
}

template<typename _Tp> template<int m, int n> inline Mat_<_Tp>::operator Matx<typename DataType<_Tp>::channel_type, m, n>() const
{
CV_Assert(n % DataType<_Tp>::channels == 0);

Matx<typename DataType<_Tp>::channel_type, m, n> res = this->Mat::operator Matx<typename DataType<_Tp>::channel_type, m, n>();
return res;
}

template<typename T1, typename T2, typename Op> inline void
process( const Mat_<T1>& m1, Mat_<T2>& m2, Op op )
{
int y, x, rows = m1.rows, cols = m1.cols;

CV_DbgAssert( m1.size() == m2.size() );

for( y = 0; y < rows; y++ )
{
const T1* src = m1[y];
T2* dst = m2[y];

for( x = 0; x < cols; x++ )
dst[x] = op(src[x]);
}
}

template<typename T1, typename T2, typename T3, typename Op> inline void
process( const Mat_<T1>& m1, const Mat_<T2>& m2, Mat_<T3>& m3, Op op )
{
int y, x, rows = m1.rows, cols = m1.cols;

CV_DbgAssert( m1.size() == m2.size() );

for( y = 0; y < rows; y++ )
{
const T1* src1 = m1[y];
const T2* src2 = m2[y];
T3* dst = m3[y];

for( x = 0; x < cols; x++ )
dst[x] = op( src1[x], src2[x] );
}
}

/////////////////////////////// Input/Output Arrays /////////////////////////////////

template<typename _Tp> inline _InputArray::_InputArray(const vector<_Tp>& vec)
: flags(FIXED_TYPE + STD_VECTOR + DataType<_Tp>::type), obj((void*)&vec) {}

template<typename _Tp> inline _InputArray::_InputArray(const vector<vector<_Tp> >& vec)
: flags(FIXED_TYPE + STD_VECTOR_VECTOR + DataType<_Tp>::type), obj((void*)&vec) {}

template<typename _Tp> inline _InputArray::_InputArray(const vector<Mat_<_Tp> >& vec)
: flags(FIXED_TYPE + STD_VECTOR_MAT + DataType<_Tp>::type), obj((void*)&vec) {}

template<typename _Tp, int m, int n> inline _InputArray::_InputArray(const Matx<_Tp, m, n>& mtx)
: flags(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type), obj((void*)&mtx), sz(n, m) {}

template<typename _Tp> inline _InputArray::_InputArray(const _Tp* vec, int n)
: flags(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type), obj((void*)vec), sz(n, 1) {}

inline _InputArray::_InputArray(const Scalar& s)
: flags(FIXED_TYPE + FIXED_SIZE + MATX + CV_64F), obj((void*)&s), sz(1, 4) {}

template<typename _Tp> inline _InputArray::_InputArray(const Mat_<_Tp>& m)
: flags(FIXED_TYPE + MAT + DataType<_Tp>::type), obj((void*)&m) {}

template<typename _Tp> inline _OutputArray::_OutputArray(vector<_Tp>& vec)
: _InputArray(vec) {}
template<typename _Tp> inline _OutputArray::_OutputArray(vector<vector<_Tp> >& vec)
: _InputArray(vec) {}
template<typename _Tp> inline _OutputArray::_OutputArray(vector<Mat_<_Tp> >& vec)
: _InputArray(vec) {}
template<typename _Tp> inline _OutputArray::_OutputArray(Mat_<_Tp>& m)
: _InputArray(m) {}
template<typename _Tp, int m, int n> inline _OutputArray::_OutputArray(Matx<_Tp, m, n>& mtx)
: _InputArray(mtx) {}
template<typename _Tp> inline _OutputArray::_OutputArray(_Tp* vec, int n)
: _InputArray(vec, n) {}

template<typename _Tp> inline _OutputArray::_OutputArray(const vector<_Tp>& vec)
: _InputArray(vec) {flags |= FIXED_SIZE;}
template<typename _Tp> inline _OutputArray::_OutputArray(const vector<vector<_Tp> >& vec)
: _InputArray(vec) {flags |= FIXED_SIZE;}
template<typename _Tp> inline _OutputArray::_OutputArray(const vector<Mat_<_Tp> >& vec)
: _InputArray(vec) {flags |= FIXED_SIZE;}

template<typename _Tp> inline _OutputArray::_OutputArray(const Mat_<_Tp>& m)
: _InputArray(m) {flags |= FIXED_SIZE;}
template<typename _Tp, int m, int n> inline _OutputArray::_OutputArray(const Matx<_Tp, m, n>& mtx)
: _InputArray(mtx) {}
template<typename _Tp> inline _OutputArray::_OutputArray(const _Tp* vec, int n)
: _InputArray(vec, n) {}

//////////////////////////////////// Matrix Expressions /////////////////////////////////////////

class CV_EXPORTS MatOp
{
public:
MatOp() {};
virtual ~MatOp() {};

virtual bool elementWise(const MatExpr& expr) const;
virtual void assign(const MatExpr& expr, Mat& m, int type=-1) const = 0;
virtual void roi(const MatExpr& expr, const Range& rowRange,
const Range& colRange, MatExpr& res) const;
virtual void diag(const MatExpr& expr, int d, MatExpr& res) const;
virtual void augAssignAdd(const MatExpr& expr, Mat& m) const;
virtual void augAssignSubtract(const MatExpr& expr, Mat& m) const;
virtual void augAssignMultiply(const MatExpr& expr, Mat& m) const;
virtual void augAssignDivide(const MatExpr& expr, Mat& m) const;
virtual void augAssignAnd(const MatExpr& expr, Mat& m) const;
virtual void augAssignOr(const MatExpr& expr, Mat& m) const;
virtual void augAssignXor(const MatExpr& expr, Mat& m) const;

virtual void add(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
virtual void add(const MatExpr& expr1, const Scalar& s, MatExpr& res) const;

virtual void subtract(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
virtual void subtract(const Scalar& s, const MatExpr& expr, MatExpr& res) const;

virtual void multiply(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const;
virtual void multiply(const MatExpr& expr1, double s, MatExpr& res) const;

virtual void divide(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const;
virtual void divide(double s, const MatExpr& expr, MatExpr& res) const;

virtual void abs(const MatExpr& expr, MatExpr& res) const;

virtual void transpose(const MatExpr& expr, MatExpr& res) const;
virtual void matmul(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
virtual void invert(const MatExpr& expr, int method, MatExpr& res) const;

virtual Size size(const MatExpr& expr) const;
virtual int type(const MatExpr& expr) const;
};

class CV_EXPORTS MatExpr
{
public:
MatExpr() : op(0), flags(0), a(Mat()), b(Mat()), c(Mat()), alpha(0), beta(0), s(Scalar()) {}
MatExpr(const MatOp* _op, int _flags, const Mat& _a=Mat(), const Mat& _b=Mat(),
const Mat& _c=Mat(), double _alpha=1, double _beta=1, const Scalar& _s=Scalar())
: op(_op), flags(_flags), a(_a), b(_b), c(_c), alpha(_alpha), beta(_beta), s(_s) {}
explicit MatExpr(const Mat& m);
operator Mat() const
{
Mat m;
op->assign(*this, m);
return m;
}

template<typename _Tp> operator Mat_<_Tp>() const
{
Mat_<_Tp> m;
op->assign(*this, m, DataType<_Tp>::type);
return m;
}

MatExpr row(int y) const;
MatExpr col(int x) const;
MatExpr diag(int d=0) const;
MatExpr operator()( const Range& rowRange, const Range& colRange ) const;
MatExpr operator()( const Rect& roi ) const;

Mat cross(const Mat& m) const;
double dot(const Mat& m) const;

MatExpr t() const;
MatExpr inv(int method = DECOMP_LU) const;
MatExpr mul(const MatExpr& e, double scale=1) const;
MatExpr mul(const Mat& m, double scale=1) const;

Size size() const;
int type() const;

const MatOp* op;
int flags;

Mat a, b, c;
double alpha, beta;
Scalar s;
};

CV_EXPORTS MatExpr operator + (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator + (const Mat& a, const Scalar& s);
CV_EXPORTS MatExpr operator + (const Scalar& s, const Mat& a);
CV_EXPORTS MatExpr operator + (const MatExpr& e, const Mat& m);
CV_EXPORTS MatExpr operator + (const Mat& m, const MatExpr& e);
CV_EXPORTS MatExpr operator + (const MatExpr& e, const Scalar& s);
CV_EXPORTS MatExpr operator + (const Scalar& s, const MatExpr& e);
CV_EXPORTS MatExpr operator + (const MatExpr& e1, const MatExpr& e2);

CV_EXPORTS MatExpr operator - (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator - (const Mat& a, const Scalar& s);
CV_EXPORTS MatExpr operator - (const Scalar& s, const Mat& a);
CV_EXPORTS MatExpr operator - (const MatExpr& e, const Mat& m);
CV_EXPORTS MatExpr operator - (const Mat& m, const MatExpr& e);
CV_EXPORTS MatExpr operator - (const MatExpr& e, const Scalar& s);
CV_EXPORTS MatExpr operator - (const Scalar& s, const MatExpr& e);
CV_EXPORTS MatExpr operator - (const MatExpr& e1, const MatExpr& e2);

CV_EXPORTS MatExpr operator - (const Mat& m);
CV_EXPORTS MatExpr operator - (const MatExpr& e);

CV_EXPORTS MatExpr operator * (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator * (const Mat& a, double s);
CV_EXPORTS MatExpr operator * (double s, const Mat& a);
CV_EXPORTS MatExpr operator * (const MatExpr& e, const Mat& m);
CV_EXPORTS MatExpr operator * (const Mat& m, const MatExpr& e);
CV_EXPORTS MatExpr operator * (const MatExpr& e, double s);
CV_EXPORTS MatExpr operator * (double s, const MatExpr& e);
CV_EXPORTS MatExpr operator * (const MatExpr& e1, const MatExpr& e2);

CV_EXPORTS MatExpr operator / (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator / (const Mat& a, double s);
CV_EXPORTS MatExpr operator / (double s, const Mat& a);
CV_EXPORTS MatExpr operator / (const MatExpr& e, const Mat& m);
CV_EXPORTS MatExpr operator / (const Mat& m, const MatExpr& e);
CV_EXPORTS MatExpr operator / (const MatExpr& e, double s);
CV_EXPORTS MatExpr operator / (double s, const MatExpr& e);
CV_EXPORTS MatExpr operator / (const MatExpr& e1, const MatExpr& e2);

CV_EXPORTS MatExpr operator < (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator < (const Mat& a, double s);
CV_EXPORTS MatExpr operator < (double s, const Mat& a);

CV_EXPORTS MatExpr operator <= (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator <= (const Mat& a, double s);
CV_EXPORTS MatExpr operator <= (double s, const Mat& a);

CV_EXPORTS MatExpr operator == (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator == (const Mat& a, double s);
CV_EXPORTS MatExpr operator == (double s, const Mat& a);

CV_EXPORTS MatExpr operator != (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator != (const Mat& a, double s);
CV_EXPORTS MatExpr operator != (double s, const Mat& a);

CV_EXPORTS MatExpr operator >= (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator >= (const Mat& a, double s);
CV_EXPORTS MatExpr operator >= (double s, const Mat& a);

CV_EXPORTS MatExpr operator > (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator > (const Mat& a, double s);
CV_EXPORTS MatExpr operator > (double s, const Mat& a);

CV_EXPORTS MatExpr min(const Mat& a, const Mat& b);
CV_EXPORTS MatExpr min(const Mat& a, double s);
CV_EXPORTS MatExpr min(double s, const Mat& a);

CV_EXPORTS MatExpr max(const Mat& a, const Mat& b);
CV_EXPORTS MatExpr max(const Mat& a, double s);
CV_EXPORTS MatExpr max(double s, const Mat& a);

template<typename _Tp> static inline MatExpr min(const Mat_<_Tp>& a, const Mat_<_Tp>& b)
{
return cv::min((const Mat&)a, (const Mat&)b);
}

template<typename _Tp> static inline MatExpr min(const Mat_<_Tp>& a, double s)
{
return cv::min((const Mat&)a, s);
}

template<typename _Tp> static inline MatExpr min(double s, const Mat_<_Tp>& a)
{
return cv::min((const Mat&)a, s);
}

template<typename _Tp> static inline MatExpr max(const Mat_<_Tp>& a, const Mat_<_Tp>& b)
{
return cv::max((const Mat&)a, (const Mat&)b);
}

template<typename _Tp> static inline MatExpr max(const Mat_<_Tp>& a, double s)
{
return cv::max((const Mat&)a, s);
}

template<typename _Tp> static inline MatExpr max(double s, const Mat_<_Tp>& a)
{
return cv::max((const Mat&)a, s);
}

template<typename _Tp> static inline void min(const Mat_<_Tp>& a, const Mat_<_Tp>& b, Mat_<_Tp>& c)
{
cv::min((const Mat&)a, (const Mat&)b, (Mat&)c);
}

template<typename _Tp> static inline void min(const Mat_<_Tp>& a, double s, Mat_<_Tp>& c)
{
cv::min((const Mat&)a, s, (Mat&)c);
}

template<typename _Tp> static inline void min(double s, const Mat_<_Tp>& a, Mat_<_Tp>& c)
{
cv::min((const Mat&)a, s, (Mat&)c);
}

template<typename _Tp> static inline void max(const Mat_<_Tp>& a, const Mat_<_Tp>& b, Mat_<_Tp>& c)
{
cv::max((const Mat&)a, (const Mat&)b, (Mat&)c);
}

template<typename _Tp> static inline void max(const Mat_<_Tp>& a, double s, Mat_<_Tp>& c)
{
cv::max((const Mat&)a, s, (Mat&)c);
}

template<typename _Tp> static inline void max(double s, const Mat_<_Tp>& a, Mat_<_Tp>& c)
{
cv::max((const Mat&)a, s, (Mat&)c);
}

CV_EXPORTS MatExpr operator & (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator & (const Mat& a, const Scalar& s);
CV_EXPORTS MatExpr operator & (const Scalar& s, const Mat& a);

CV_EXPORTS MatExpr operator | (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator | (const Mat& a, const Scalar& s);
CV_EXPORTS MatExpr operator | (const Scalar& s, const Mat& a);

CV_EXPORTS MatExpr operator ^ (const Mat& a, const Mat& b);
CV_EXPORTS MatExpr operator ^ (const Mat& a, const Scalar& s);
CV_EXPORTS MatExpr operator ^ (const Scalar& s, const Mat& a);

CV_EXPORTS MatExpr operator ~(const Mat& m);

CV_EXPORTS MatExpr abs(const Mat& m);
CV_EXPORTS MatExpr abs(const MatExpr& e);

template<typename _Tp> static inline MatExpr abs(const Mat_<_Tp>& m)
{
return cv::abs((const Mat&)m);
}

////////////////////////////// Augmenting algebraic operations //////////////////////////////////

inline Mat& Mat::operator = (const MatExpr& e)
{
e.op->assign(e, *this);
return *this;
}

template<typename _Tp> inline Mat_<_Tp>::Mat_(const MatExpr& e)
{
e.op->assign(e, *this, DataType<_Tp>::type);
}

template<typename _Tp> Mat_<_Tp>& Mat_<_Tp>::operator = (const MatExpr& e)
{
e.op->assign(e, *this, DataType<_Tp>::type);
return *this;
}

static inline Mat& operator += (const Mat& a, const Mat& b)
{
add(a, b, (Mat&)a);
return (Mat&)a;
}

static inline Mat& operator += (const Mat& a, const Scalar& s)
{
add(a, s, (Mat&)a);
return (Mat&)a;
}

template<typename _Tp> static inline
Mat_<_Tp>& operator += (const Mat_<_Tp>& a, const Mat_<_Tp>& b)
{
add(a, b, (Mat&)a);
return (Mat_<_Tp>&)a;
}

template<typename _Tp> static inline
Mat_<_Tp>& operator += (const Mat_<_Tp>& a, const Scalar& s)
{
add(a, s, (Mat&)a);
return (Mat_<_Tp>&)a;
}

static inline Mat& operator += (const Mat& a, const MatExpr& b)
{
b.op->augAssignAdd(b, (Mat&)a);
return (Mat&)a;
}

template<typename _Tp> static inline
Mat_<_Tp>& operator += (const Mat_<_Tp>& a, const MatExpr& b)
{
b.op->augAssignAdd(b, (Mat&)a);
return (Mat_<_Tp>&)a;
}

static inline Mat& operator -= (const Mat& a, const Mat& b)
{
subtract(a, b, (Mat&)a);
return (Mat&)a;
}

static inline Mat& operator -= (const Mat& a, const Scalar& s)
{
subtract(a, s, (Mat&)a);
return (Mat&)a;
}

template<typename _Tp> static inline
Mat_<_Tp>& operator -= (const Mat_<_Tp>& a, const Mat_<_Tp>& b)
{
subtract(a, b, (Mat&)a);
return (Mat_<_Tp>&)a;
}

template<typename _Tp> static inline
Mat_<_Tp>& operator -= (const Mat_<_Tp>& a, const Scalar& s)
{
subtract(a, s, (Mat&)a);
return (Mat_<_Tp>&)a;
}

static inline Mat& operator -= (const Mat& a, const MatExpr& b)
{
b.op->augAssignSubtract(b, (Mat&)a);
return (Mat&)a;
}

template<typename _Tp> static inline
Mat_<_Tp>& operator -= (const Mat_<_Tp>& a, const MatExpr& b)
{
b.op->augAssignSubtract(b, (Mat&)a);
return (Mat_<_Tp>&)a;
}

static inline Mat& operator *= (const Mat& a, const Mat& b)
{
gemm(a, b, 1, Mat(), 0, (Mat&)a, 0);
return (Mat&)a;
}

static inline Mat& operator *= (const Mat& a, double s)
{
a.convertTo((Mat&)a, -1, s);
return (Mat&)a;
}

template<typename _Tp> static inline
Mat_<_Tp>& operator *= (const Mat_<_Tp>& a, const Mat_<_Tp>& b)
{
gemm(a, b, 1, Mat(), 0, (Mat&)a, 0);
return (Mat_<_Tp>&)a;
}

template<typename _Tp> static inline
Mat_<_Tp>& operator *= (const Mat_<_Tp>& a, double s)
{
a.convertTo((Mat&)a, -1, s);
return (Mat_<_Tp>&)a;
}

static inline Mat& operator *= (const Mat& a, const MatExpr& b)
{
b.op->augAssignMultiply(b, (Mat&)a);
return (Mat&)a;
}

template<typename _Tp> static inline
Mat_<_Tp>& operator *= (const Mat_<_Tp>& a, const MatExpr& b)
{
b.op->augAssignMultiply(b, (Mat&)a);
return (Mat_<_Tp>&)a;
}

static inline Mat& operator /= (const Mat& a, const Mat& b)
{
divide(a, b, (Mat&)a);
return (Mat&)a;
}

static inline Mat& operator /= (const Mat& a, double s)
{
a.convertTo((Mat&)a, -1, 1./s);
return (Mat&)a;
}

template<typename _Tp> static inline
Mat_<_Tp>& operator /= (const Mat_<_Tp>& a, const Mat_<_Tp>& b)
{
divide(a, b, (Mat&)a);
return (Mat_<_Tp>&)a;
}

template<typename _Tp> static inline
Mat_<_Tp>& operator /= (const Mat_<_Tp>& a, double s)
{
a.convertTo((Mat&)a, -1, 1./s);
return (Mat_<_Tp>&)a;
}

static inline Mat& operator /= (const Mat& a, const MatExpr& b)
{
b.op->augAssignDivide(b, (Mat&)a);
return (Mat&)a;
}

template<typename _Tp> static inline
Mat_<_Tp>& operator /= (const Mat_<_Tp>& a, const MatExpr& b)
{
b.op->augAssignDivide(b, (Mat&)a);
return (Mat_<_Tp>&)a;
}

////////////////////////////// Logical operations ///////////////////////////////

static inline Mat& operator &= (const Mat& a, const Mat& b)
{
bitwise_and(a, b, (Mat&)a);
return (Mat&)a;
}

static inline Mat& operator &= (const Mat& a, const Scalar& s)
{
bitwise_and(a, s, (Mat&)a);
return (Mat&)a;
}

template<typename _Tp> static inline Mat_<_Tp>&
operator &= (const Mat_<_Tp>& a, const Mat_<_Tp>& b)
{
bitwise_and(a, b, (Mat&)a);
return (Mat_<_Tp>&)a;
}

template<typename _Tp> static inline Mat_<_Tp>&
operator &= (const Mat_<_Tp>& a, const Scalar& s)
{
bitwise_and(a, s, (Mat&)a);
return (Mat_<_Tp>&)a;
}

static inline Mat& operator |= (const Mat& a, const Mat& b)
{
bitwise_or(a, b, (Mat&)a);
return (Mat&)a;
}

static inline Mat& operator |= (const Mat& a, const Scalar& s)
{
bitwise_or(a, s, (Mat&)a);
return (Mat&)a;
}

template<typename _Tp> static inline Mat_<_Tp>&
operator |= (const Mat_<_Tp>& a, const Mat_<_Tp>& b)
{
bitwise_or(a, b, (Mat&)a);
return (Mat_<_Tp>&)a;
}

template<typename _Tp> static inline Mat_<_Tp>&
operator |= (const Mat_<_Tp>& a, const Scalar& s)
{
bitwise_or(a, s, (Mat&)a);
return (Mat_<_Tp>&)a;
}

static inline Mat& operator ^= (const Mat& a, const Mat& b)
{
bitwise_xor(a, b, (Mat&)a);
return (Mat&)a;
}

static inline Mat& operator ^= (const Mat& a, const Scalar& s)
{
bitwise_xor(a, s, (Mat&)a);
return (Mat&)a;
}

template<typename _Tp> static inline Mat_<_Tp>&
operator ^= (const Mat_<_Tp>& a, const Mat_<_Tp>& b)
{
bitwise_xor(a, b, (Mat&)a);
return (Mat_<_Tp>&)a;
}

template<typename _Tp> static inline Mat_<_Tp>&
operator ^= (const Mat_<_Tp>& a, const Scalar& s)
{
bitwise_xor(a, s, (Mat&)a);
return (Mat_<_Tp>&)a;
}

/////////////////////////////// Miscellaneous operations //////////////////////////////

template<typename _Tp> void split(const Mat& src, vector<Mat_<_Tp> >& mv)
{ split(src, (vector<Mat>&)mv ); }

//////////////////////////////////////////////////////////////

template<typename _Tp> inline MatExpr Mat_<_Tp>::zeros(int rows, int cols)
{
return Mat::zeros(rows, cols, DataType<_Tp>::type);
}

template<typename _Tp> inline MatExpr Mat_<_Tp>::zeros(Size sz)
{
return Mat::zeros(sz, DataType<_Tp>::type);
}

template<typename _Tp> inline MatExpr Mat_<_Tp>::ones(int rows, int cols)
{
return Mat::ones(rows, cols, DataType<_Tp>::type);
}

template<typename _Tp> inline MatExpr Mat_<_Tp>::ones(Size sz)
{
return Mat::ones(sz, DataType<_Tp>::type);
}

template<typename _Tp> inline MatExpr Mat_<_Tp>::eye(int rows, int cols)
{
return Mat::eye(rows, cols, DataType<_Tp>::type);
}

template<typename _Tp> inline MatExpr Mat_<_Tp>::eye(Size sz)
{
return Mat::eye(sz, DataType<_Tp>::type);
}

//////////////////////////////// Iterators & Comma initializers //////////////////////////////////

inline MatConstIterator::MatConstIterator()
: m(0), elemSize(0), ptr(0), sliceStart(0), sliceEnd(0) {}

inline MatConstIterator::MatConstIterator(const Mat* _m)
: m(_m), elemSize(_m->elemSize()), ptr(0), sliceStart(0), sliceEnd(0)
{
if( m && m->isContinuous() )
{
sliceStart = m->data;
sliceEnd = sliceStart + m->total()*elemSize;
}
seek((const int*)0);
}

inline MatConstIterator::MatConstIterator(const Mat* _m, int _row, int _col)
: m(_m), elemSize(_m->elemSize()), ptr(0), sliceStart(0), sliceEnd(0)
{
CV_Assert(m && m->dims <= 2);
if( m->isContinuous() )
{
sliceStart = m->data;
sliceEnd = sliceStart + m->total()*elemSize;
}
int idx[]={_row, _col};
seek(idx);
}

inline MatConstIterator::MatConstIterator(const Mat* _m, Point _pt)
: m(_m), elemSize(_m->elemSize()), ptr(0), sliceStart(0), sliceEnd(0)
{
CV_Assert(m && m->dims <= 2);
if( m->isContinuous() )
{
sliceStart = m->data;
sliceEnd = sliceStart + m->total()*elemSize;
}
int idx[]={_pt.y, _pt.x};
seek(idx);
}

inline MatConstIterator::MatConstIterator(const MatConstIterator& it)
: m(it.m), elemSize(it.elemSize), ptr(it.ptr), sliceStart(it.sliceStart), sliceEnd(it.sliceEnd)
{}

inline MatConstIterator& MatConstIterator::operator = (const MatConstIterator& it )
{
m = it.m; elemSize = it.elemSize; ptr = it.ptr;
sliceStart = it.sliceStart; sliceEnd = it.sliceEnd;
return *this;
}

inline uchar* MatConstIterator::operator *() const { return ptr; }

inline MatConstIterator& MatConstIterator::operator += (ptrdiff_t ofs)
{
if( !m || ofs == 0 )
return *this;
ptrdiff_t ofsb = ofs*elemSize;
ptr += ofsb;
if( ptr < sliceStart || sliceEnd <= ptr )
{
ptr -= ofsb;
seek(ofs, true);
}
return *this;
}

inline MatConstIterator& MatConstIterator::operator -= (ptrdiff_t ofs)
{ return (*this += -ofs); }

inline MatConstIterator& MatConstIterator::operator --()
{
if( m && (ptr -= elemSize) < sliceStart )
{
ptr += elemSize;
seek(-1, true);
}
return *this;
}

inline MatConstIterator MatConstIterator::operator --(int)
{
MatConstIterator b = *this;
*this += -1;
return b;
}

inline MatConstIterator& MatConstIterator::operator ++()
{
if( m && (ptr += elemSize) >= sliceEnd )
{
ptr -= elemSize;
seek(1, true);
}
return *this;
}

inline MatConstIterator MatConstIterator::operator ++(int)
{
MatConstIterator b = *this;
*this += 1;
return b;
}

template<typename _Tp> inline MatConstIterator_<_Tp>::MatConstIterator_() {}

template<typename _Tp> inline MatConstIterator_<_Tp>::MatConstIterator_(const Mat_<_Tp>* _m)
: MatConstIterator(_m) {}

template<typename _Tp> inline MatConstIterator_<_Tp>::
MatConstIterator_(const Mat_<_Tp>* _m, int _row, int _col)
: MatConstIterator(_m, _row, _col) {}

template<typename _Tp> inline MatConstIterator_<_Tp>::
MatConstIterator_(const Mat_<_Tp>* _m, Point _pt)
: MatConstIterator(_m, _pt) {}

template<typename _Tp> inline MatConstIterator_<_Tp>::
MatConstIterator_(const MatConstIterator_& it)
: MatConstIterator(it) {}

template<typename _Tp> inline MatConstIterator_<_Tp>&
MatConstIterator_<_Tp>::operator = (const MatConstIterator_& it )
{
MatConstIterator::operator = (it);
return *this;
}

template<typename _Tp> inline _Tp MatConstIterator_<_Tp>::operator *() const { return *(_Tp*)(this->ptr); }

template<typename _Tp> inline MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator += (ptrdiff_t ofs)
{
MatConstIterator::operator += (ofs);
return *this;
}

template<typename _Tp> inline MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator -= (ptrdiff_t ofs)
{ return (*this += -ofs); }

template<typename _Tp> inline MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator --()
{
MatConstIterator::operator --();
return *this;
}

template<typename _Tp> inline MatConstIterator_<_Tp> MatConstIterator_<_Tp>::operator --(int)
{
MatConstIterator_ b = *this;
MatConstIterator::operator --();
return b;
}

template<typename _Tp> inline MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator ++()
{
MatConstIterator::operator ++();
return *this;
}

template<typename _Tp> inline MatConstIterator_<_Tp> MatConstIterator_<_Tp>::operator ++(int)
{
MatConstIterator_ b = *this;
MatConstIterator::operator ++();
return b;
}

template<typename _Tp> inline MatIterator_<_Tp>::MatIterator_() : MatConstIterator_<_Tp>() {}

template<typename _Tp> inline MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m)
: MatConstIterator_<_Tp>(_m) {}

template<typename _Tp> inline MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m, int _row, int _col)
: MatConstIterator_<_Tp>(_m, _row, _col) {}

template<typename _Tp> inline MatIterator_<_Tp>::MatIterator_(const Mat_<_Tp>* _m, Point _pt)
: MatConstIterator_<_Tp>(_m, _pt) {}

template<typename _Tp> inline MatIterator_<_Tp>::MatIterator_(const Mat_<_Tp>* _m, const int* _idx)
: MatConstIterator_<_Tp>(_m, _idx) {}

template<typename _Tp> inline MatIterator_<_Tp>::MatIterator_(const MatIterator_& it)
: MatConstIterator_<_Tp>(it) {}

template<typename _Tp> inline MatIterator_<_Tp>& MatIterator_<_Tp>::operator = (const MatIterator_<_Tp>& it )
{
MatConstIterator::operator = (it);
return *this;
}

template<typename _Tp> inline _Tp& MatIterator_<_Tp>::operator *() const { return *(_Tp*)(this->ptr); }

template<typename _Tp> inline MatIterator_<_Tp>& MatIterator_<_Tp>::operator += (ptrdiff_t ofs)
{
MatConstIterator::operator += (ofs);
return *this;
}

template<typename _Tp> inline MatIterator_<_Tp>& MatIterator_<_Tp>::operator -= (ptrdiff_t ofs)
{
MatConstIterator::operator += (-ofs);
return *this;
}

template<typename _Tp> inline MatIterator_<_Tp>& MatIterator_<_Tp>::operator --()
{
MatConstIterator::operator --();
return *this;
}

template<typename _Tp> inline MatIterator_<_Tp> MatIterator_<_Tp>::operator --(int)
{
MatIterator_ b = *this;
MatConstIterator::operator --();
return b;
}

template<typename _Tp> inline MatIterator_<_Tp>& MatIterator_<_Tp>::operator ++()
{
MatConstIterator::operator ++();
return *this;
}

template<typename _Tp> inline MatIterator_<_Tp> MatIterator_<_Tp>::operator ++(int)
{
MatIterator_ b = *this;
MatConstIterator::operator ++();
return b;
}

template<typename _Tp> inline Point MatConstIterator_<_Tp>::pos() const
{
if( !m )
return Point();
CV_DbgAssert( m->dims <= 2 );
if( m->isContinuous() )
{
ptrdiff_t ofs = (const _Tp*)ptr - (const _Tp*)m->data;
int y = (int)(ofs / m->cols), x = (int)(ofs - (ptrdiff_t)y*m->cols);
return Point(x, y);
}
else
{
ptrdiff_t ofs = (uchar*)ptr - m->data;
int y = (int)(ofs / m->step), x = (int)((ofs - y*m->step)/sizeof(_Tp));
return Point(x, y);
}
}

static inline bool
operator == (const MatConstIterator& a, const MatConstIterator& b)
{ return a.m == b.m && a.ptr == b.ptr; }

template<typename _Tp> static inline bool
operator != (const MatConstIterator& a, const MatConstIterator& b)
{ return !(a == b); }

template<typename _Tp> static inline bool
operator == (const MatConstIterator_<_Tp>& a, const MatConstIterator_<_Tp>& b)
{ return a.m == b.m && a.ptr == b.ptr; }

template<typename _Tp> static inline bool
operator != (const MatConstIterator_<_Tp>& a, const MatConstIterator_<_Tp>& b)
{ return a.m != b.m || a.ptr != b.ptr; }

template<typename _Tp> static inline bool
operator == (const MatIterator_<_Tp>& a, const MatIterator_<_Tp>& b)
{ return a.m == b.m && a.ptr == b.ptr; }

template<typename _Tp> static inline bool
operator != (const MatIterator_<_Tp>& a, const MatIterator_<_Tp>& b)
{ return a.m != b.m || a.ptr != b.ptr; }

static inline bool
operator < (const MatConstIterator& a, const MatConstIterator& b)
{ return a.ptr < b.ptr; }

static inline bool
operator > (const MatConstIterator& a, const MatConstIterator& b)
{ return a.ptr > b.ptr; }

static inline bool
operator <= (const MatConstIterator& a, const MatConstIterator& b)
{ return a.ptr <= b.ptr; }

static inline bool
operator >= (const MatConstIterator& a, const MatConstIterator& b)
{ return a.ptr >= b.ptr; }

CV_EXPORTS ptrdiff_t operator - (const MatConstIterator& b, const MatConstIterator& a);

static inline MatConstIterator operator + (const MatConstIterator& a, ptrdiff_t ofs)
{ MatConstIterator b = a; return b += ofs; }

static inline MatConstIterator operator + (ptrdiff_t ofs, const MatConstIterator& a)
{ MatConstIterator b = a; return b += ofs; }

static inline MatConstIterator operator - (const MatConstIterator& a, ptrdiff_t ofs)
{ MatConstIterator b = a; return b += -ofs; }

template<typename _Tp> static inline MatConstIterator_<_Tp>
operator + (const MatConstIterator_<_Tp>& a, ptrdiff_t ofs)
{ MatConstIterator t = (const MatConstIterator&)a + ofs; return (MatConstIterator_<_Tp>&)t; }

template<typename _Tp> static inline MatConstIterator_<_Tp>
operator + (ptrdiff_t ofs, const MatConstIterator_<_Tp>& a)
{ MatConstIterator t = (const MatConstIterator&)a + ofs; return (MatConstIterator_<_Tp>&)t; }

template<typename _Tp> static inline MatConstIterator_<_Tp>
operator - (const MatConstIterator_<_Tp>& a, ptrdiff_t ofs)
{ MatConstIterator t = (const MatConstIterator&)a - ofs; return (MatConstIterator_<_Tp>&)t; }

inline uchar* MatConstIterator::operator [](ptrdiff_t i) const
{ return *(*this + i); }

template<typename _Tp> inline _Tp MatConstIterator_<_Tp>::operator [](ptrdiff_t i) const
{ return *(_Tp*)MatConstIterator::operator [](i); }

template<typename _Tp> static inline MatIterator_<_Tp>
operator + (const MatIterator_<_Tp>& a, ptrdiff_t ofs)
{ MatConstIterator t = (const MatConstIterator&)a + ofs; return (MatIterator_<_Tp>&)t; }

template<typename _Tp> static inline MatIterator_<_Tp>
operator + (ptrdiff_t ofs, const MatIterator_<_Tp>& a)
{ MatConstIterator t = (const MatConstIterator&)a + ofs; return (MatIterator_<_Tp>&)t; }

template<typename _Tp> static inline MatIterator_<_Tp>
operator - (const MatIterator_<_Tp>& a, ptrdiff_t ofs)
{ MatConstIterator t = (const MatConstIterator&)a - ofs; return (MatIterator_<_Tp>&)t; }

template<typename _Tp> inline _Tp& MatIterator_<_Tp>::operator [](ptrdiff_t i) const
{ return *(*this + i); }

template<typename _Tp> inline MatConstIterator_<_Tp> Mat_<_Tp>::begin() const
{ return Mat::begin<_Tp>(); }

template<typename _Tp> inline MatConstIterator_<_Tp> Mat_<_Tp>::end() const
{ return Mat::end<_Tp>(); }

template<typename _Tp> inline MatIterator_<_Tp> Mat_<_Tp>::begin()
{ return Mat::begin<_Tp>(); }

template<typename _Tp> inline MatIterator_<_Tp> Mat_<_Tp>::end()
{ return Mat::end<_Tp>(); }

template<typename _Tp> inline MatCommaInitializer_<_Tp>::MatCommaInitializer_(Mat_<_Tp>* _m) : it(_m) {}

template<typename _Tp> template<typename T2> inline MatCommaInitializer_<_Tp>&
MatCommaInitializer_<_Tp>::operator , (T2 v)
{
CV_DbgAssert( this->it < ((const Mat_<_Tp>*)this->it.m)->end() );
*this->it = _Tp(v); ++this->it;
return *this;
}

template<typename _Tp> inline Mat_<_Tp> MatCommaInitializer_<_Tp>::operator *() const
{
CV_DbgAssert( this->it == ((const Mat_<_Tp>*)this->it.m)->end() );
return Mat_<_Tp>(*this->it.m);
}

template<typename _Tp> inline MatCommaInitializer_<_Tp>::operator Mat_<_Tp>() const
{
CV_DbgAssert( this->it == ((const Mat_<_Tp>*)this->it.m)->end() );
return Mat_<_Tp>(*this->it.m);
}

template<typename _Tp, typename T2> static inline MatCommaInitializer_<_Tp>
operator << (const Mat_<_Tp>& m, T2 val)
{
MatCommaInitializer_<_Tp> commaInitializer((Mat_<_Tp>*)&m);
return (commaInitializer, val);
}

//////////////////////////////// SparseMat ////////////////////////////////

inline SparseMat::SparseMat()
: flags(MAGIC_VAL), hdr(0)
{
}

inline SparseMat::SparseMat(int _dims, const int* _sizes, int _type)
: flags(MAGIC_VAL), hdr(0)
{
create(_dims, _sizes, _type);
}

inline SparseMat::SparseMat(const SparseMat& m)
: flags(m.flags), hdr(m.hdr)
{
addref();
}

inline SparseMat::~SparseMat()
{
release();
}

inline SparseMat& SparseMat::operator = (const SparseMat& m)
{
if( this != &m )
{
if( m.hdr )
CV_XADD(&m.hdr->refcount, 1);
release();
flags = m.flags;
hdr = m.hdr;
}
return *this;
}

inline SparseMat& SparseMat::operator = (const Mat& m)
{ return (*this = SparseMat(m)); }

inline SparseMat SparseMat::clone() const
{
SparseMat temp;
this->copyTo(temp);
return temp;
}

inline void SparseMat::assignTo( SparseMat& m, int _type ) const
{
if( _type < 0 )
m = *this;
else
convertTo(m, _type);
}

inline void SparseMat::addref()
{ if( hdr ) CV_XADD(&hdr->refcount, 1); }

inline void SparseMat::release()
{
if( hdr && CV_XADD(&hdr->refcount, -1) == 1 )
delete hdr;
hdr = 0;
}

inline size_t SparseMat::elemSize() const
{ return CV_ELEM_SIZE(flags); }

inline size_t SparseMat::elemSize1() const
{ return CV_ELEM_SIZE1(flags); }

inline int SparseMat::type() const
{ return CV_MAT_TYPE(flags); }

inline int SparseMat::depth() const
{ return CV_MAT_DEPTH(flags); }

inline int SparseMat::channels() const
{ return CV_MAT_CN(flags); }

inline const int* SparseMat::size() const
{
return hdr ? hdr->size : 0;
}

inline int SparseMat::size(int i) const
{
if( hdr )
{
CV_DbgAssert((unsigned)i < (unsigned)hdr->dims);
return hdr->size[i];
}
return 0;
}

inline int SparseMat::dims() const
{
return hdr ? hdr->dims : 0;
}

inline size_t SparseMat::nzcount() const
{
return hdr ? hdr->nodeCount : 0;
}

inline size_t SparseMat::hash(int i0) const
{
return (size_t)i0;
}

inline size_t SparseMat::hash(int i0, int i1) const
{
return (size_t)(unsigned)i0*HASH_SCALE + (unsigned)i1;
}

inline size_t SparseMat::hash(int i0, int i1, int i2) const
{
return ((size_t)(unsigned)i0*HASH_SCALE + (unsigned)i1)*HASH_SCALE + (unsigned)i2;
}

inline size_t SparseMat::hash(const int* idx) const
{
size_t h = (unsigned)idx[0];
if( !hdr )
return 0;
int i, d = hdr->dims;
for( i = 1; i < d; i++ )
h = h*HASH_SCALE + (unsigned)idx[i];
return h;
}

template<typename _Tp> inline _Tp& SparseMat::ref(int i0, size_t* hashval)
{ return *(_Tp*)((SparseMat*)this)->ptr(i0, true, hashval); }

template<typename _Tp> inline _Tp& SparseMat::ref(int i0, int i1, size_t* hashval)
{ return *(_Tp*)((SparseMat*)this)->ptr(i0, i1, true, hashval); }

template<typename _Tp> inline _Tp& SparseMat::ref(int i0, int i1, int i2, size_t* hashval)
{ return *(_Tp*)((SparseMat*)this)->ptr(i0, i1, i2, true, hashval); }

template<typename _Tp> inline _Tp& SparseMat::ref(const int* idx, size_t* hashval)
{ return *(_Tp*)((SparseMat*)this)->ptr(idx, true, hashval); }

template<typename _Tp> inline _Tp SparseMat::value(int i0, size_t* hashval) const
{
const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(i0, false, hashval);
return p ? *p : _Tp();
}

template<typename _Tp> inline _Tp SparseMat::value(int i0, int i1, size_t* hashval) const
{
const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(i0, i1, false, hashval);
return p ? *p : _Tp();
}

template<typename _Tp> inline _Tp SparseMat::value(int i0, int i1, int i2, size_t* hashval) const
{
const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(i0, i1, i2, false, hashval);
return p ? *p : _Tp();
}

template<typename _Tp> inline _Tp SparseMat::value(const int* idx, size_t* hashval) const
{
const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(idx, false, hashval);
return p ? *p : _Tp();
}

template<typename _Tp> inline const _Tp* SparseMat::find(int i0, size_t* hashval) const
{ return (const _Tp*)((SparseMat*)this)->ptr(i0, false, hashval); }

template<typename _Tp> inline const _Tp* SparseMat::find(int i0, int i1, size_t* hashval) const
{ return (const _Tp*)((SparseMat*)this)->ptr(i0, i1, false, hashval); }

template<typename _Tp> inline const _Tp* SparseMat::find(int i0, int i1, int i2, size_t* hashval) const
{ return (const _Tp*)((SparseMat*)this)->ptr(i0, i1, i2, false, hashval); }

template<typename _Tp> inline const _Tp* SparseMat::find(const int* idx, size_t* hashval) const
{ return (const _Tp*)((SparseMat*)this)->ptr(idx, false, hashval); }

template<typename _Tp> inline _Tp& SparseMat::value(Node* n)
{ return *(_Tp*)((uchar*)n + hdr->valueOffset); }

template<typename _Tp> inline const _Tp& SparseMat::value(const Node* n) const
{ return *(const _Tp*)((const uchar*)n + hdr->valueOffset); }

inline SparseMat::Node* SparseMat::node(size_t nidx)
{ return (Node*)(void*)&hdr->pool[nidx]; }

inline const SparseMat::Node* SparseMat::node(size_t nidx) const
{ return (const Node*)(void*)&hdr->pool[nidx]; }

inline SparseMatIterator SparseMat::begin()
{ return SparseMatIterator(this); }

inline SparseMatConstIterator SparseMat::begin() const
{ return SparseMatConstIterator(this); }

inline SparseMatIterator SparseMat::end()
{ SparseMatIterator it(this); it.seekEnd(); return it; }

inline SparseMatConstIterator SparseMat::end() const
{ SparseMatConstIterator it(this); it.seekEnd(); return it; }

template<typename _Tp> inline SparseMatIterator_<_Tp> SparseMat::begin()
{ return SparseMatIterator_<_Tp>(this); }

template<typename _Tp> inline SparseMatConstIterator_<_Tp> SparseMat::begin() const
{ return SparseMatConstIterator_<_Tp>(this); }

template<typename _Tp> inline SparseMatIterator_<_Tp> SparseMat::end()
{ SparseMatIterator_<_Tp> it(this); it.seekEnd(); return it; }

template<typename _Tp> inline SparseMatConstIterator_<_Tp> SparseMat::end() const
{ SparseMatConstIterator_<_Tp> it(this); it.seekEnd(); return it; }

inline SparseMatConstIterator::SparseMatConstIterator()
: m(0), hashidx(0), ptr(0)
{
}

inline SparseMatConstIterator::SparseMatConstIterator(const SparseMatConstIterator& it)
: m(it.m), hashidx(it.hashidx), ptr(it.ptr)
{
}

static inline bool operator == (const SparseMatConstIterator& it1, const SparseMatConstIterator& it2)
{ return it1.m == it2.m && it1.ptr == it2.ptr; }

static inline bool operator != (const SparseMatConstIterator& it1, const SparseMatConstIterator& it2)
{ return !(it1 == it2); }

inline SparseMatConstIterator& SparseMatConstIterator::operator = (const SparseMatConstIterator& it)
{
if( this != &it )
{
m = it.m;
hashidx = it.hashidx;
ptr = it.ptr;
}
return *this;
}

template<typename _Tp> inline const _Tp& SparseMatConstIterator::value() const
{ return *(_Tp*)ptr; }

inline const SparseMat::Node* SparseMatConstIterator::node() const
{
return ptr && m && m->hdr ?
(const SparseMat::Node*)(void*)(ptr - m->hdr->valueOffset) : 0;
}

inline SparseMatConstIterator SparseMatConstIterator::operator ++(int)
{
SparseMatConstIterator it = *this;
++*this;
return it;
}

inline void SparseMatConstIterator::seekEnd()
{
if( m && m->hdr )
{
hashidx = m->hdr->hashtab.size();
ptr = 0;
}
}

inline SparseMatIterator::SparseMatIterator()
{}

inline SparseMatIterator::SparseMatIterator(SparseMat* _m)
: SparseMatConstIterator(_m)
{}

inline SparseMatIterator::SparseMatIterator(const SparseMatIterator& it)
: SparseMatConstIterator(it)
{
}

inline SparseMatIterator& SparseMatIterator::operator = (const SparseMatIterator& it)
{
(SparseMatConstIterator&)*this = it;
return *this;
}

template<typename _Tp> inline _Tp& SparseMatIterator::value() const
{ return *(_Tp*)ptr; }

inline SparseMat::Node* SparseMatIterator::node() const
{
return (SparseMat::Node*)SparseMatConstIterator::node();
}

inline SparseMatIterator& SparseMatIterator::operator ++()
{
SparseMatConstIterator::operator ++();
return *this;
}

inline SparseMatIterator SparseMatIterator::operator ++(int)
{
SparseMatIterator it = *this;
++*this;
return it;
}

template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_()
{ flags = MAGIC_VAL | DataType<_Tp>::type; }

template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_(int _dims, const int* _sizes)
: SparseMat(_dims, _sizes, DataType<_Tp>::type)
{}

template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_(const SparseMat& m)
{
if( m.type() == DataType<_Tp>::type )
*this = (const SparseMat_<_Tp>&)m;
else
m.convertTo(*this, DataType<_Tp>::type);
}

template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_(const SparseMat_<_Tp>& m)
{
this->flags = m.flags;
this->hdr = m.hdr;
if( this->hdr )
CV_XADD(&this->hdr->refcount, 1);
}

template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_(const Mat& m)
{
SparseMat sm(m);
*this = sm;
}

template<typename _Tp> inline SparseMat_<_Tp>::SparseMat_(const CvSparseMat* m)
{
SparseMat sm(m);
*this = sm;
}

template<typename _Tp> inline SparseMat_<_Tp>&
SparseMat_<_Tp>::operator = (const SparseMat_<_Tp>& m)
{
if( this != &m )
{
if( m.hdr ) CV_XADD(&m.hdr->refcount, 1);
release();
flags = m.flags;
hdr = m.hdr;
}
return *this;
}

template<typename _Tp> inline SparseMat_<_Tp>&
SparseMat_<_Tp>::operator = (const SparseMat& m)
{
if( m.type() == DataType<_Tp>::type )
return (*this = (const SparseMat_<_Tp>&)m);
m.convertTo(*this, DataType<_Tp>::type);
return *this;
}

template<typename _Tp> inline SparseMat_<_Tp>&
SparseMat_<_Tp>::operator = (const Mat& m)
{ return (*this = SparseMat(m)); }

template<typename _Tp> inline SparseMat_<_Tp>
SparseMat_<_Tp>::clone() const
{
SparseMat_<_Tp> m;
this->copyTo(m);
return m;
}

template<typename _Tp> inline void
SparseMat_<_Tp>::create(int _dims, const int* _sizes)
{
SparseMat::create(_dims, _sizes, DataType<_Tp>::type);
}

template<typename _Tp> inline
SparseMat_<_Tp>::operator CvSparseMat*() const
{
return SparseMat::operator CvSparseMat*();
}

template<typename _Tp> inline int SparseMat_<_Tp>::type() const
{ return DataType<_Tp>::type; }

template<typename _Tp> inline int SparseMat_<_Tp>::depth() const
{ return DataType<_Tp>::depth; }

template<typename _Tp> inline int SparseMat_<_Tp>::channels() const
{ return DataType<_Tp>::channels; }

template<typename _Tp> inline _Tp&
SparseMat_<_Tp>::ref(int i0, size_t* hashval)
{ return SparseMat::ref<_Tp>(i0, hashval); }

template<typename _Tp> inline _Tp
SparseMat_<_Tp>::operator()(int i0, size_t* hashval) const
{ return SparseMat::value<_Tp>(i0, hashval); }

template<typename _Tp> inline _Tp&
SparseMat_<_Tp>::ref(int i0, int i1, size_t* hashval)
{ return SparseMat::ref<_Tp>(i0, i1, hashval); }

template<typename _Tp> inline _Tp
SparseMat_<_Tp>::operator()(int i0, int i1, size_t* hashval) const
{ return SparseMat::value<_Tp>(i0, i1, hashval); }

template<typename _Tp> inline _Tp&
SparseMat_<_Tp>::ref(int i0, int i1, int i2, size_t* hashval)
{ return SparseMat::ref<_Tp>(i0, i1, i2, hashval); }

template<typename _Tp> inline _Tp
SparseMat_<_Tp>::operator()(int i0, int i1, int i2, size_t* hashval) const
{ return SparseMat::value<_Tp>(i0, i1, i2, hashval); }

template<typename _Tp> inline _Tp&
SparseMat_<_Tp>::ref(const int* idx, size_t* hashval)
{ return SparseMat::ref<_Tp>(idx, hashval); }

template<typename _Tp> inline _Tp
SparseMat_<_Tp>::operator()(const int* idx, size_t* hashval) const
{ return SparseMat::value<_Tp>(idx, hashval); }

template<typename _Tp> inline SparseMatIterator_<_Tp> SparseMat_<_Tp>::begin()
{ return SparseMatIterator_<_Tp>(this); }

template<typename _Tp> inline SparseMatConstIterator_<_Tp> SparseMat_<_Tp>::begin() const
{ return SparseMatConstIterator_<_Tp>(this); }

template<typename _Tp> inline SparseMatIterator_<_Tp> SparseMat_<_Tp>::end()
{ SparseMatIterator_<_Tp> it(this); it.seekEnd(); return it; }

template<typename _Tp> inline SparseMatConstIterator_<_Tp> SparseMat_<_Tp>::end() const
{ SparseMatConstIterator_<_Tp> it(this); it.seekEnd(); return it; }

template<typename _Tp> inline
SparseMatConstIterator_<_Tp>::SparseMatConstIterator_()
{}

template<typename _Tp> inline
SparseMatConstIterator_<_Tp>::SparseMatConstIterator_(const SparseMat_<_Tp>* _m)
: SparseMatConstIterator(_m)
{}

template<typename _Tp> inline
SparseMatConstIterator_<_Tp>::SparseMatConstIterator_(const SparseMat* _m)
: SparseMatConstIterator(_m)
{
CV_Assert( _m->type() == DataType<_Tp>::type );
}

template<typename _Tp> inline
SparseMatConstIterator_<_Tp>::SparseMatConstIterator_(const SparseMatConstIterator_<_Tp>& it)
: SparseMatConstIterator(it)
{}

template<typename _Tp> inline SparseMatConstIterator_<_Tp>&
SparseMatConstIterator_<_Tp>::operator = (const SparseMatConstIterator_<_Tp>& it)
{ return reinterpret_cast<SparseMatConstIterator_<_Tp>&>
(*reinterpret_cast<SparseMatConstIterator*>(this) =
reinterpret_cast<const SparseMatConstIterator&>(it)); }

template<typename _Tp> inline const _Tp&
SparseMatConstIterator_<_Tp>::operator *() const
{ return *(const _Tp*)this->ptr; }

template<typename _Tp> inline SparseMatConstIterator_<_Tp>&
SparseMatConstIterator_<_Tp>::operator ++()
{
SparseMatConstIterator::operator ++();
return *this;
}

template<typename _Tp> inline SparseMatConstIterator_<_Tp>
SparseMatConstIterator_<_Tp>::operator ++(int)
{
SparseMatConstIterator_<_Tp> it = *this;
SparseMatConstIterator::operator ++();
return it;
}

template<typename _Tp> inline
SparseMatIterator_<_Tp>::SparseMatIterator_()
{}

template<typename _Tp> inline
SparseMatIterator_<_Tp>::SparseMatIterator_(SparseMat_<_Tp>* _m)
: SparseMatConstIterator_<_Tp>(_m)
{}

template<typename _Tp> inline
SparseMatIterator_<_Tp>::SparseMatIterator_(SparseMat* _m)
: SparseMatConstIterator_<_Tp>(_m)
{}

template<typename _Tp> inline
SparseMatIterator_<_Tp>::SparseMatIterator_(const SparseMatIterator_<_Tp>& it)
: SparseMatConstIterator_<_Tp>(it)
{}

template<typename _Tp> inline SparseMatIterator_<_Tp>&
SparseMatIterator_<_Tp>::operator = (const SparseMatIterator_<_Tp>& it)
{ return reinterpret_cast<SparseMatIterator_<_Tp>&>
(*reinterpret_cast<SparseMatConstIterator*>(this) =
reinterpret_cast<const SparseMatConstIterator&>(it)); }

template<typename _Tp> inline _Tp&
SparseMatIterator_<_Tp>::operator *() const
{ return *(_Tp*)this->ptr; }

template<typename _Tp> inline SparseMatIterator_<_Tp>&
SparseMatIterator_<_Tp>::operator ++()
{
SparseMatConstIterator::operator ++();
return *this;
}

template<typename _Tp> inline SparseMatIterator_<_Tp>
SparseMatIterator_<_Tp>::operator ++(int)
{
SparseMatIterator_<_Tp> it = *this;
SparseMatConstIterator::operator ++();
return it;
}

}

#endif
#endif

OpenCV Mat&Operations的更多相关文章

  1. Matlab to OpenCV Mat

    convert Matlab matrix to OpenCV Mat. Support CV_32FC3 only currently. The Code int matlab2opencv(cv: ...

  2. OpenCV Mat数据类型及位数总结(转载)

    OpenCV Mat数据类型及位数总结(转载) 前言 opencv中很多数据结构为了达到內存使用的最优化,通常都会用它最小上限的空间来分配变量,有的数据结构也会因为图像文件格式的关系而给予适当的变量, ...

  3. OpenCV Mat数据类型指针ptr的使用

    OpenCV Mat数据类型指针ptr的使用 cv::Mat image = cv::Mat(400, 600, CV_8UC1); //宽400,长600 uchar * data00 = imag ...

  4. Qt QImage与OpenCV Mat转换

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/51029382 应一个朋友的要求,整理总 ...

  5. 快速遍历OpenCV Mat图像数据的多种方法和性能分析 | opencv mat for loop

    本文首发于个人博客https://kezunlin.me/post/61d55ab4/,欢迎阅读! opencv mat for loop Series Part 1: compile opencv ...

  6. OpenCV Code: Operations on Mat element

    cv::Mat img = cv::imread("image.jpg"); Method 1: img.at<uchar>(i, j, k) Method 2: im ...

  7. OpenCv Mat操作总结

    Author:: Maddock Date: 2015-03-23 16:33:49 转载请注明出处:http://blog.csdn.net/adong76/article/details/4053 ...

  8. 海康网络摄像机YV12转换为BGR,由opencv Mat显示 (转)

    我使用的是海康DS-2CD852MF-E, 200万,网络摄像机,已经比较老了,不过SDK在海康官网下载的,开发流程都差不多. 海康摄像机回调解码后的视频数据格式为YV12,顺便说一下YV12的数据格 ...

  9. Live YUV420 和 OpenCV Mat 的互相转换

    1. YUV420 -> Mat 可用于转换接受到的YUV视频源到OpenCV可以识别的数据 Mat myuv( Frame_Height + Frame_Height / 2, Frame_W ...

随机推荐

  1. 解决172.17 或者172.18 机房环境下harbor服务器不通的问题

    直接改docker-compose.yml文件: 把原来的network选项注释掉,自定义 #networks: # harbor: # external: false networks: harbo ...

  2. API接口设计

    1.场景描述 比如说我们要做一款APP,需要通过api接口给app提供数据.假设我们是做商城,比如我们卖书的.我们可以想象下这个APP大概有哪些内容: 1)首页:banner区域(可以是一些热门书籍的 ...

  3. BAT推荐免费下载JAVA转型大数据开发全链路教程(视频+源码)价值19880元

    如今随着环境的改变,物联网.AI.大数据.人工智能等,是未来的大趋势,而大数据是这些基石,万物互联,机器学习都是大数据应用场景! 为什么要学习大数据?我们JAVA到底要不要转型大数据? 好比问一个程序 ...

  4. linux-memcache安装及memcached memcache扩展

    linux memcached安装yum -y install libevent libevent-deve yum list memcached yum -y install memcached m ...

  5. UESTC-1057 秋实大哥与花(线段树+成段加减+区间求和)

    秋实大哥与花 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit St ...

  6. 思维体操: HDU1008 Elevator

    Elevator Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  7. UVA 11354 Bond 最小生成树 + lca

    题意 给出一张图,q个询问,每次询问给出uv,找出一条路径,使这条路径上的最大边权是两点所有路径中最小,输出这个值 思路 很显然要先求出最小生成树,任意两点在最小生成树上有唯一路径,并且这条路径上的最 ...

  8. Redis中的事务及乐观锁的实现

    介绍 Redis中的事务(transaction)是一组命令的集合.     事务同命令一样都是Redis最小的执行单位,一个事务中的命令要么都执行,要么都不执行.     Redis事务的实现需要用 ...

  9. CTS2018+1没去记&APIO2018+1游记

    bgm Tips:想知道为什么标题不是2019吗,请看评论区 Day -2 md上午才写一道题qwq 机房里一堆dalao都回家收东西去北京了qwq,我菜死了,cts都去不了QAQ 下午晚上也才肝了两 ...

  10. Python自动化学习--鼠标和键盘事件

    from selenium import webdriver from selenium.webdriver import ActionChains import time driver = webd ...