Co-prime

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 12   Accepted Submission(s) : 4

Font: Times New Roman | Verdana | Georgia

Font Size: ← →

Problem Description

Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.

Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.

Input

The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 1015) and (1 <=N <= 109).

Output

For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.

Sample Input

2
1 10 2
3 15 5

Sample Output

Case #1: 5
Case #2: 10

Hint

In the first test case, the five integers in range [1,10] which are relatively prime to 2 are {1,3,5,7,9}.

Source

The Third Lebanese Collegiate Programming Contest

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#include<iostream>
#include<cstring>
#include<cstdio>
  
using namespace std;
typedef long long LL;
const int N = 1e5+5;
  
LL f[N],prime[N],vis[N],cnt,k;
void prime_factor(){
    memset(vis,0,sizeof(vis));
    vis[0]=vis[1] = 1,cnt = 0;
    for(LL i=2;i*i<N;i++)
    if(!vis[i]) for(LL j=i*i;j<N;j+=i) vis[j] = 1;
    for(LL i=0;i<N;i++) if(!vis[i]) prime[cnt++] = i;
}
LL poie(LL x){
    LL ret = 0,sum,tmp;
    for(LL i=1;i<(1LL<<k);i++){
        tmp = 1,sum=0;
        for(LL j=0;j<k;j++) if(i&(1LL<<j)){sum++,tmp*=f[j];}
        if(sum&1) ret += x/tmp;
        else ret -= x/tmp;
    }
    return ret;
}
  
void solve_question(LL A,LL B,LL n){
    LL tmp = n;
    k = 0 ;
    for(LL i=0;prime[i]*prime[i]<= tmp;i++){
        if(tmp%prime[i]==0)
            f[k++] = prime[i];
        while(tmp%prime[i]==0)
            tmp/=prime[i];
    }
    if(tmp > 1) f[k++] = tmp;
    LL ans =B-poie(B)-A+1+poie(A-1);
    printf("%I64d\n",ans);
}
int main(){
    int T,Case=0;
    LL A,B,n;
    scanf("%d",&T);
    prime_factor();
    while(T--){
        scanf("%I64d %I64d %I64d",&A,&B,&n);
        printf("Case #%d: ",++Case);
        solve_question(A,B,n);
    }
}
 

数学: HDU Co-prime的更多相关文章

  1. HDOJ(HDU).1016 Prime Ring Problem (DFS)

    HDOJ(HDU).1016 Prime Ring Problem (DFS) [从零开始DFS(3)] 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架 ...

  2. HDU 1016 Prime Ring Problem(经典DFS+回溯)

    Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  3. hdu 1973 Prime Path

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1973 Prime Path Description The ministers of the cabi ...

  4. HDU 1016 Prime Ring Problem

    在刚刚写完代码的时候才发现我以前交过这道题,可是没有过. 后来因为不理解代码,于是也就不了了之了. 可说呢,那时的我哪知道什么DFS深搜的东西啊,而且对递归的理解也很肤浅. 这道题应该算HDU 261 ...

  5. [HDU 1016]--Prime Ring Problem(回溯)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1016 Prime Ring Problem Time Limit: 4000/2000 MS (Jav ...

  6. [HDU 1973]--Prime Path(BFS,素数表)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1973 Prime Path Time Limit: 5000/1000 MS (Java/Others ...

  7. HDU 1016 Prime Ring Problem 题解

    Problem Description A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ... ...

  8. HDU 1016 Prime Ring Problem(素数环问题)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1016 Prime Ring Problem Time Limit: 4000/2000 MS (Jav ...

  9. hdu 1016 Prime Ring Problem(DFS)

    Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  10. hdu 1016 Prime Ring Problem(深度优先搜索)

    Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. ApplicationRunner接口

    ApplicationRunner 和 CommandLineRunner 功能一致,用法也基本一致,唯一的区别主要体现在对参数的处理上,ApplicationRunner 可以接收更多类型的参数(A ...

  2. CF 149E Martian Strings 后缀自动机

    这里给出来一个后缀自动机的题解. 考虑对 $s$ 的正串和反串分别建后缀自动机. 对于正串的每个节点维护 $endpos$ 的最小值. 对于反串的每个节点维护 $endpos$ 的最大值. 这两个东西 ...

  3. BZOJ 2157: 旅游 (结构体存变量)

    用结构体存变量好像确实能提高运行速度,以后就这么写数据结构了 Code: #include <cstdio> #include <algorithm> #include < ...

  4. LSTM细节

    为什么使用tanh? 为了克服梯度消失问题,我们需要一个二阶导数在趋近零点之前能维持很长距离的函数.tanh是具有这种属性的合适的函数. 为什么要使用Sigmoid? 由于Sigmoid函数可以输出0 ...

  5. Oracle锁处理脚本

    ----处理死锁进程--查看被锁住的表select b.owner,b.object_name,a.session_id,a.locked_mode from v$locked_object a,db ...

  6. Burpsuiet爆破

    burpsuite中intruder标签内attack type四种类型的用法和区别 2016年07月24日 18:13:26 xss_01 阅读数:9802更多 个人分类: burpsuite网络安 ...

  7. 关于项目中的一些经验:封装activity、service的基类,封装数据对象

    经验一,将几个页面公用的数据,和方法进行封装,形成一个baseActivity的类: package com.ctbri.weather.control; import java.util.Array ...

  8. 初始化Thread

    此处初始化的步骤和上文中介绍的一样,也是调用runClinit方法.首先设置初始化线程为CurrentThread,然后由于其父类Object此时的状态为CLASS_READY,因此就不需要初始化父类 ...

  9. 条形码(barcode)code128生成代码

    条形码(barcode)code128生成代码 很简单 多些这位兄弟https://bbs.csdn.net/topics/350125614 下面是我的DEMO 直接放到VS2005下面编译即可 # ...

  10. leetcode-mid-sorting and searching - 56 Merge Intervals

    mycode 出现的问题:比如最后一个元素是[1,10],1小于前面所有元素的最小值,10大于前面所有元素的最大值,而我最开始的思路只考虑了相邻 参考: 思路:如果我只考虑相邻,必须先将list排序, ...