学习spark,RDD是一个逃不过去的话题,那么接下来我们看看RDD


1.什么是RDD?

  RDD叫做弹性分布式数据集,是Spark中最基本的数据抽象,代表一个不可变、可分区、里面元素可以并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式的将工作集缓存在内存中,后续的查询能够重用工作集,极大的提升了查询速度

2RDD的属性

  (1)一组分片,就是数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD的时候指定RDD的分片个数,如果没有指定,那么就会采用默认值。

  (2)一个计算每个分区的函数。Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次的计算结果。

  (3)RDD之间的依赖关系。RDD每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失的时候,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD分区进行重新计算。

  (4)一个partition,就是RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于HashPartitioner,另一个是基于方位的RangePartitioner。只有对于key-value的RDD,才会有Parition,非key-value的RDD的partition的值是None。Partiotion函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出的分片数量

  (5)一个列表,存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照"移动移动数据不如移动计算"的理念,Spark在金sing任务调度的时候,会尽可能的将计算任务分配到其所要处理的数据块的存储位置

  (6)RDD(弹性分布式数据集),是spark中的一个基本抽象,代表了一个不可变的分区的元素的集合,可以运行在一个并行的集合上,这个类包含了可以运行在所有的RDD上的基本的操作,例如map,filter以及persist。除此之外,org.apache.spark.rdd.PairedRDDFunctions包含仅能在RDDkey-value对上操作,如groupBy以及join操作。

  (7)每个RDD包含了五个主要的属性:

    (1)是一个分区列表

    (2)针对每个切片的计算函数

    (3)对其他RDD的依赖列表

    (4)可选的,如果是KeyValueRDD的话,可以带一个分区类

    (5)可选,首选块位置列表(主要针对hdfs block块的)

spark数据结构之RDD的更多相关文章

  1. Spark计算模型-RDD介绍

    在Spark集群背后,有一个非常重要的分布式数据架构,即弹性分布式数据集(Resilient Distributed DataSet,RDD),它是逻辑集中的实体,在集群中的多台集群上进行数据分区.通 ...

  2. Spark的核心RDD(Resilient Distributed Datasets弹性分布式数据集)

    Spark的核心RDD (Resilient Distributed Datasets弹性分布式数据集)  原文链接:http://www.cnblogs.com/yjd_hycf_space/p/7 ...

  3. Spark深入之RDD

    目录 Part III. Low-Level APIs Resilient Distributed Datasets (RDDs) 1.介绍 2.RDD代码 3.KV RDD 4.RDD Join A ...

  4. spark 中的RDD编程 -以下基于Java api

    1.RDD介绍:     RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动 ...

  5. Spark 核心概念 RDD 详解

    RDD全称叫做弹性分布式数据集(Resilient Distributed Datasets),它是一种分布式的内存抽象,表示一个只读的记录分区的集合,它只能通过其他RDD转换而创建,为此,RDD支持 ...

  6. Spark学习之RDD编程总结

    Spark 对数据的核心抽象——弹性分布式数据集(Resilient Distributed Dataset,简称 RDD).RDD 其实就是分布式的元素集合.在 Spark 中,对数据的所有操作不外 ...

  7. [Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子

    [Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子 sqlContext = HiveContext(sc) peopleDF = sqlContext. ...

  8. [Spark][Python][DataFrame][RDD]从DataFrame得到RDD的例子

    [Spark][Python][DataFrame][RDD]从DataFrame得到RDD的例子 $ hdfs dfs -cat people.json {"name":&quo ...

  9. Spark 核心概念RDD

    文章正文 RDD全称叫做弹性分布式数据集(Resilient Distributed Datasets),它是一种分布式的内存抽象,表示一个只读的记录分区的集合,它只能通过其他RDD转换而创建,为此, ...

随机推荐

  1. 【Leetcode】2的幂(整数的二进制形式,与运算)

    class Solution { public: bool isPowerOfTwo(int n) { ) return false; )) == ; } }; 注: 1) 2的幂函数,其y值大于0: ...

  2. 【转】django rest framework ModelSerializer 、serializers小结

    转自:https://blog.csdn.net/l_vip/article/details/79156113 引言 serializers是什么?官网是这样的”Serializers allow c ...

  3. MySQL的(@i:=@i+1)用处及用法

    今天写一个为查询的数据排序列号的SQL语句,整理出来下面的笔记: 这是语法:   SELECT (@i:=@i+1),t.* FROM table_name t,(SELECT @i:=0) AS j ...

  4. Spring Boot教程(十一) springboot程序构建一个docker镜像

    准备工作 环境: linux环境或mac,不要用windows jdk 8 maven 3.0 docker 对docker一无所知的看docker教程. 创建一个springboot工程 引入web ...

  5. druid监控每个服务数据库连接数和SQL执行效率

    1.下载druid 2.将刚刚下载的druid放入tomcat下的lib目录 3.配置要监控的服务启动文件,添加: -Dcom.sun.management.jmxremote.port=4090 - ...

  6. [LeetCode]-011-Container_With_Most_Water

    Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai).  ...

  7. 原型模式故事链(4)--JS执行上下文、变量提升、函数声明

    上一章:JS的数据类型 传送门:https://segmentfault.com/a/11... 好!话不多少,我们就开始吧.对变量提升和函数声明的理解,能让你更清楚容易的理解,为什么你的程序报错了~ ...

  8. DjangoRESTFrameWork中的视图

    DRF中的request 在Django REST Framework中内置的Request类扩展了Django中的Request类,实现了很多方便的功能--如请求数据解析和认证等. 比如,区别于Dj ...

  9. k8s中pod内dns无法解析的问题

    用k8s创建了pod,然后进入pod后,发现在pod中无法解析www.baidu.com,也就是出现了无法解析外面的域名的问题.经过高人指点,做个小总结.操作如下. 一,将CoreDNS 的Confi ...

  10. 如何使用Jetbrains Clion 在一个工程里 编译单个C++源文件 (实现一键编译且运行)

    这篇文章主要在下面这篇文章的基础上,先是实现了一键编译和一键运行两个单个功能,最后又进一步使用Clion自带的Custom Build Application实现编译且运行一键实现. https:// ...