传送门

看到这个式子就感觉很有意思

左边就是求一次函数 $y=\left \lfloor \frac{q}{p} \right \rfloor x$ 在 $x \in [0,(p-1)/2]$ 时函数图像下方的整点数量

右边就是求一次函数 $y=\left \lfloor \frac{p}{q} \right \rfloor x$ 在 $x \in [0,(q-1)/2]$ 时函数图像下方的整点数量

把两个图画出来,发现图像刚好可以拼接成一个 $(p-1)/2\ \cdot\ (q-1)/2$ 的矩形,又因为 $p,q$ 互质所以两个图像在范围内不会经过整点

所以答案就是矩形中的整点数:$(p-1)/2\ \cdot\ (q-1)/2$ ?

但是还要考虑一下 $p=q$ 时的情况,此时还要再加上 $(p-1)/2$,加起来化简一下就是 $(pq-1)/4$

然后就行了

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<map>
using namespace std;
typedef long long ll;
typedef long double ldb;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
ll p,q;
int main()
{
p=read(),q=read();
printf("%lld\n",p==q ? (p*q-)/ : (p-)/*(q-)/);
return ;
}

P4132 [BJOI2012]算不出的等式的更多相关文章

  1. 题解【[BJOI2012]算不出的等式】

    题目背景emmm \[\text{首先特判掉p=q时的情况(ans = }p^2-1\text{)}\] \[\text{构造函数}f(k) = \left\lfloor \frac{kq}{p}\r ...

  2. [題解](函數下整點個數?)luogu_P4132_BZOJ_2659_算不出的等式

    兩個都是一次函數,下取整就是整點個數,兩個函數k剛好成倒數,所以最後發現會組合成一個矩形 (為啥要考慮重複與否的問題???) 然而這樣會不會重複計算點數呢 我們發現因為取的是圖像下的整數點 所以要想重 ...

  3. bzoj 2659: [Beijing wc2012]算不出的算式

    2659: [Beijing wc2012]算不出的算式 Time Limit: 3 Sec  Memory Limit: 128 MB Description 算不出的算式背景:曾经有一个老掉牙的游 ...

  4. BZOJ2659: [Beijing wc2012]算不出的算式

    2659: [Beijing wc2012]算不出的算式 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 668  Solved: 366[Submit] ...

  5. 2659: [Beijing wc2012]算不出的算式

    2659: [Beijing wc2012]算不出的算式 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 757  Solved: 425[Submit] ...

  6. BZOJ2659: [Beijing wc2012]算不出的算式(数学)

    Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1575  Solved: 939[Submit][Status][Discuss] Descriptio ...

  7. 2659: [Beijing wc2012]算不出的算式 - BZOJ

    最近有点颓废,刷水题,数学题(根本不会做啊) 题意:求 q,p是两个奇质数 网上题解就直接说是几何意义,问了别人才知道 我们在坐标轴上画出来就是在线段y=(q/p)x下方的格点和y=(p/q)x下方的 ...

  8. 【BZOJ】2659: [Beijing wc2012]算不出的算式

    题意 给两个奇质数\(p, q(p, q < 2^{31})\),求\(\sum_{k=1}^{\frac{p-1}{2}} \left \lfloor \frac{kq}{p} \right ...

  9. [BZOJ2659][WC2012]算不出的算式(几何)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2659 分析:很巧的想法,原式的值就是y=q/p x这条直线的下面和左边的点的个数.处理 ...

随机推荐

  1. C# 给DataTable去重

    using System; using System.Data; namespace DelegateTest { public class Program { public static void ...

  2. JS 控制子页面刷新父页面

    iframe里面的子页,用parent.location.href = parent.location.reload();如果是window.open 打开就用opener.location.relo ...

  3. shell脚本--expect自动应答

    expect自动应答  TCL语言 需求1:远程登录到A主机,什么事情也不做 #! /usr/bin/env expect # 开启一个程序 spawn ssh root@192.144.213.11 ...

  4. [python 学习] argparse模块

    https://docs.python.org/3/library/argparse.html#module-argparse

  5. How to permanently set $PATH on Linux/Unix?

    You need to add it to your ~/.profile or ~/.bashrc file. export PATH=$PATH:/path/to/dir Depending on ...

  6. linux运维、架构之路-keepalived高可用

    一.Keepalived介绍          Keepalived起初是专为LVS负载均衡软件设计的,用来管理并监控LVS集群系统中各个服务节点的状态,后来又加入了可以实现高可用的VRRP功能,Ke ...

  7. django2 + python3 显示静态文件中的图片

    之前一直搞不出来 是因为图片的问题,步骤也就是固定的几步,到位了就差不多成了 文件夹结构: . ├── HelloWorld │   ├── __init__.py │   ├── __pycache ...

  8. MySQL server has gone away 问题解决方法

    问题描述: SQLyog在执行大的sql文件时候,报错,报错日志显示2006 - MySQL server has gone away 解决办法: 在php.ini配置文件的[mysqld]节点下添加 ...

  9. 【HDOJ6646】A + B = C(模拟)

    题意 1<=a,b,c<=1e100000 思路: #include<bits/stdc++.h> using namespace std; typedef long long ...

  10. 20180715-Java StringBuffer和StringBuilder类

    public class Test{ public static void main(String args[]){ StringBuffer sBuffer = new StringBuffer(& ...