题目

分析

套上prufer序列

对于一颗n个节点度数分别为\(d_1、d_2...d_n\)方案数为\(\dfrac{(n-2)!}{(d_1-1)!(d_2-1)!......(d_n-1)!}\)

所以答案为

\[\sum_{d_1+d_2+...+d_n=2n-2}\dfrac{(n-2)!}{(d_1-1)!(d_2-1)!...(d_n-1)!}w_1^{d_1}w_2^{d_2}...w_n^{d_n}d_1d_2...d_n
\]

使\(d_i-1\)

\[w_1w_2...w_n(n-2)!\sum_{d_1+d_2+...+d_n=n-2}\dfrac{1}{d_1!d_2!...d_n!}w_1^{d_1}w_2^{d_2}...w_n^{d_n}(d_1+1)(d_2+1)...(d_n+1)
\]

考虑处理

\[\sum_{d_1+d_2+...+d_n=n-2}\dfrac{1}{d_1!d_2!...d_n!}w_1^{d_1}w_2^{d_2}...w_n^{d_n}(d_1+1)(d_2+1)...(d_n+1)
\]

对于多项式\((d_1+1)(d_2+1)...(d_n+1)\),拆开后变成一个个形如\(d_1d_2...d_k\)的项

我们考虑\(d_1d_2d_3\)

\[\sum_{d_1+d_2+...+d_n=n-2}\dfrac{1}{d_1!d_2!...d_n!}w_1^{d_1}w_2^{d_2}...w_n^{d_n}d_1d_2d_3
\]

\[w_1w_2w_3\sum_{d_1+d_2+...+d_n=n-2-3}\dfrac{1}{d_1!d_2!...d_n!}w_1^{d_1}w_2^{d_2}...w_n^{d_n}
\]

\[\sum_{k=1}^{n-2}(\sum_{1\leq p_1<p_2<...<p_k \leq n}\Pi_{i=1}^{k}w_{p_i})\dfrac{(\sum_{i=1}^{n}w_i)^{n-2-k}}{(n-2-k)!}
\]

//后面的内容我还不太理解,只能大概讲讲。如果讲错了,请大佬指出一下错误

现在解释一下最后一条式子

根据指数型生成函数的定义

\[G(x)=\sum g_i\dfrac{x^i}{i!}=\dfrac{x^1}{1!}+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+..
\]

当\(g_i=1\)时,\(G(x)=e^x\)

那么,$$\sum_{d_1+d_2+...+d_n=n-2-k}\dfrac{1}{d_1!d_2!...d_n!}w_1{d_1}w_2{d_2}...w_n^{d_n}$$

\[=(\dfrac{w_1^1}{1!}+\dfrac{w_1^2}{2!}+..)(\dfrac{w_2^1}{1!}+\dfrac{w_2^2}{2!}+..)...(\dfrac{w_n^1}{1!}+\dfrac{w_n^2}{2!}+..)[其中总次方数为n-2-k]
\]

\[=G(w_1)G(w_2)...G(w_n)[其中总次方数为n-2-k]
\]

\[=e^{w_1+w_2+...+w_n}[其中总次方数为n-2-k]
\]

\[=G(w_1+w_2+...+w_n)=\sum \dfrac{(w_1+w_2+...+w_n)^i}{i!}
\]

那么当\(i=n-2-k\)时,则就是\(\sum_{d_1+d_2+...+d_n=n-2-k}\dfrac{1}{d_1!d_2!...d_n!}w_1^{d_1}w_2^{d_2}...w_n^{d_n}\)

即为$$\dfrac{(\sum_{i=1}{n}w_i){n-2-k}}{(n-2-k)!}$$

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
const int maxlongint=2147483647;
const long long mo=1e9+7;
const int N=2005;
using namespace std;
long long w[N],ans,f[N],sum,jc[N],ww;
int n;
long long mi(long long x,int y)
{
long long s=1;
for(;y;x=x*x%mo,y>>=1) s=y&1?s*x%mo:s;
return s;
}
int main()
{
scanf("%d",&n);
f[0]=jc[0]=ww=1;
for(int i=1;i<=n;i++)
{
scanf("%lld",&w[i]),sum=(sum+w[i])%mo,jc[i]=jc[i-1]*i%mo,ww=ww*w[i]%mo;
for(int j=i;j>=1;j--) f[j]=(f[j]+f[j-1]*w[i]%mo)%mo;
}
for(int k=0;k<=n-2;k++)
ans=(ans+f[k]*mi(sum,n-2-k)%mo*mi(jc[n-2-k],mo-2)%mo)%mo;
printf("%lld",ans*ww%mo*jc[n-2]%mo);
}

【JZOJ5180】【NOI2017模拟6.29】呵呵的更多相关文章

  1. 【JZOJ5179】【NOI2017模拟6.29】哈哈

    题意 给定一个长度为n的序列,你可以进行若干次操作: 选择一个区间,删掉,并获得Val[Len]的得分,Len为这个区间的长度: 其中这个区间满足: 1.相邻两个数差的绝对值为1 2.每个数都大于相邻 ...

  2. JZOJ 5184. 【NOIP2017提高组模拟6.29】Gift

    5184. [NOIP2017提高组模拟6.29]Gift (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB  Detailed ...

  3. [jzoj NOIP2018模拟10.29]

    OI生涯的最高分,来了纪中这么多天,在经历了这么多场“NOIP难度”的模拟赛之后,终于看到了真正的NOIP 今天考场上效率很高,很快码完了全部的题目,留下了足够的时间对拍和...发呆.不得不说看着电脑 ...

  4. 「模拟8.29」chinese(性质)·physics·chemistry(概率期望)

    T1  chinese 根据他的问题i*f[i]我们容易联想到,答案其实是每种方案中每个点的贡献为1的加和 我们可以转变问题,每个点在所有方案的贡献 进而其实询问就是1-k的取值,有多少中方案再取个和 ...

  5. 【模拟7.29】大佬(概率期望DP)

    首先根据数据范围,可以判断基本上是n^2的复杂度 通过分析我们发现每一次都可以从m个数中任意选,既然任意选,那么此时的概率的分母就是不变的,然而题中涉及的是某一段的最大值,所以我们按套路假设 f[i] ...

  6. [jzoj]2505.【NOIP2011模拟7.29】藤原妹红

    Link https://jzoj.net/senior/#main/show/2505 Description 在幻想乡,藤原妹红是拥有不老不死能力的人类.虽然不喜欢与人们交流,妹红仍然保护着误入迷 ...

  7. [JZOJ 5888] [NOIP2018模拟9.29] GCD生成树 解题报告 (最大生成树+公约数)

    题目链接: http://172.16.0.132/senior/#main/show/5888 题目: 题解: 思路是这样的:两个数的最大公约数一定不会比这两个数的任意一个数大.因此我们把权值相等的 ...

  8. [考试反思]0822NOIP模拟测试29:延续

    想保持优秀很困难 但是想持续垫底却很简单 但是你不想垫底的话持续垫底也很容易... 分AB卷,A卷共15人. skyh,tdcp,kx155,B哥145... 我:35,倒数第一. 板子专题,爆零快乐 ...

  9. 8.22 NOIP模拟测试29(B) 爬山+学数数+七十和十七

    T1 爬山 二分最高高度,$O(1)$判断是否可行. #include<iostream> #include<cstdio> #define ll long long usin ...

随机推荐

  1. Windows Server 中配置权威时间服务器

    0" style="box-sizing: inherit; outline: none;"> 若要配置 Windows 时间服务以使用内部硬件时钟,请使用下列方法 ...

  2. OpenGL_构建GLFW与第一个程序

    参考教程:https://learnopengl-cn.github.io/ 这个教程已经给出了很详细的资料,当然我这里是对细节的展示(在Windows上). 首先,你需要准备 VS2017 : ht ...

  3. springboot_redis

    1.引入redis的启动器 <dependency> <groupId>org.springframework.boot</groupId> <artifac ...

  4. 用docker 跑 logstash节点 - kibana界面汉化

    0.docker中logstash的配置文件 [root@VM_0_6_centos pipeline]# cat logstash.yml #http.host: "0.0.0.0&quo ...

  5. SolidWorks学习笔记7 镜像,阵列

    镜像 将特征,面,实体相对于一个平面来复制.修改原来的特征,镜像特征随之改变 阵列 线性阵列 , 在左侧,先激活要阵列的特征,然后点击小柱 然后选择方向1和方向2,该方向的阵列距离和数量(一般使用边线 ...

  6. GIT命令总结,so easy

    一:GIT命令实战(码云) https://oschina.gitee.io/learn-git-branching/ 提交 git commit 创建分支 git branch <name&g ...

  7. httprunner - 源码解析

    这里只是做一个大概的解析,还有很多细节部分没有太过于关注 我们从cli.py开始进行解析 1.argparse.ArgumentParser 接受命令行的各种参数 [ argparse.Argumen ...

  8. C语言实现远程代码注入

    #include <windows.h> #include <iostream> #define STRLEN 20 typedef struct _DATA { DWORD ...

  9. 分布式的几件小事(二)dubbo的工作原理

    1.dubbo的工作原理 ①整体设计 图例说明: 图中左边淡蓝背景的为服务消费方使用的接口,右边淡绿色背景的为服务提供方使用的接口,位于中轴线上的为双方都用到的接口. 图中从下至上分为十层,各层均为单 ...

  10. css简单动画(transition属性)

    一.对transition属性的认识 1.transition 属性是一个简写属性,可用于设置四个过渡属性:transition-property     过渡效果的 CSS 属性的名称(height ...