一、MTD系统架构

1.MTD设备体验

FLASH在嵌入式系统中是必不可少的,它是bootloader、linux内核和文件系统的最佳载体。

在Linux内核中引入了MTD子系统为NORFLASH和NAND FLASH设备提供统一的接口,从而使得FLASH驱动的设计大为简化。

  1. cat /proc/mtd

每个分区对应一个块设备

  1. ls -l /dev/mtd*
  2. crw-rw---- 1 0 0 90, 0 Jan 1 00:00 /dev/mtd0
  3. crw-rw---- 1 0 0 90, 1 Jan 1 00:00 /dev/mtd0ro
  4. crw-rw---- 1 0 0 90, 2 Jan 1 00:00 /dev/mtd1
  5. crw-rw---- 1 0 0 90, 3 Jan 1 00:00 /dev/mtd1ro
  6. crw-rw---- 1 0 0 90, 4 Jan 1 00:00 /dev/mtd2
  7. crw-rw---- 1 0 0 90, 5 Jan 1 00:00 /dev/mtd2ro
  8. brw-rw---- 1 0 0 31, 0 Jan 1 00:00 /dev/mtdblock0
  9. brw-rw---- 1 0 0 31, 1 Jan 1 00:00 /dev/mtdblock1
  10. brw-rw---- 1 0 0 31, 2 Jan 1 00:00 /dev/mtdblock2

2.块设备驱动系统架构

二、YAFFS2文件系统应用

1.MTD分区设置

配置linux内核支持mtd,找到mtd接口文件,设置空间大小。

2.Yaffs2文件系统制作

将rootfs格式化生成yaffs文件系统。

  1. /home/win/mkyaffs2image ./rootfs/ rootfs.img

3.Uboot参数设置

在uboot_tq2440\include\configs\TQ2440.h中有uboot的启动配置选项

  1. #define CONFIG_BZIP2
  2. #define CONFIG_LZO
  3. #define CONFIG_LZMA
  4. #define CONFIG_CMD_NAND_YAFFS
  5. #define CONFIG_BOOTARGS "console=ttySAC0 root=/dev/mtdblock3"
  6. #define CONFIG_BOOTCOMMAND "nand read 0x30000000 kernel;bootm 0x30000000"

4.下载烧写与启动

在uboot中用dnw下载



三、Nandflash驱动设计

s3c2410.c/s3c24xx_nand_probe:

  1. static int s3c24xx_nand_probe(struct platform_device *pdev,
  2. enum s3c_cpu_type cpu_type)
  3. {
  4. struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
  5. struct s3c2410_nand_info *info;
  6. struct s3c2410_nand_mtd *nmtd;
  7. struct s3c2410_nand_set *sets;
  8. struct resource *res;
  9. int err = 0;
  10. int size;
  11. int nr_sets;
  12. int setno;
  13. pr_debug("s3c2410_nand_probe(%p)\n", pdev);
  14. info = kmalloc(sizeof(*info), GFP_KERNEL);
  15. if (info == NULL) {
  16. dev_err(&pdev->dev, "no memory for flash info\n");
  17. err = -ENOMEM;
  18. goto exit_error;
  19. }
  20. memset(info, 0, sizeof(*info));
  21. platform_set_drvdata(pdev, info);
  22. spin_lock_init(&info->controller.lock);
  23. init_waitqueue_head(&info->controller.wq);
  24. /* get the clock source and enable it */
  25. info->clk = clk_get(&pdev->dev, "nand");                                  //获取时钟,并使能
  26. if (IS_ERR(info->clk)) {
  27. dev_err(&pdev->dev, "failed to get clock\n");
  28. err = -ENOENT;
  29. goto exit_error;
  30. }
  31. clk_enable(info->clk);
  32. /* allocate and map the resource */
  33. /* currently we assume we have the one resource */
  34. res = pdev->resource;
  35. size = res->end - res->start + 1;
  36. info->area = request_mem_region(res->start, size, pdev->name);                         //地址转换
  37. if (info->area == NULL) {
  38. dev_err(&pdev->dev, "cannot reserve register region\n");
  39. err = -ENOENT;
  40. goto exit_error;
  41. }
  42. info->device = &pdev->dev;
  43. info->platform = plat;
  44. info->regs = ioremap(res->start, size);
  45. info->cpu_type = cpu_type;
  46. if (info->regs == NULL) {
  47. dev_err(&pdev->dev, "cannot reserve register region\n");
  48. err = -EIO;
  49. goto exit_error;
  50. }
  51. dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
  52. /* initialise the hardware */
  53. err = s3c2410_nand_inithw(info);                                                        //初始化硬件
  54. if (err != 0)
  55. goto exit_error;
  56. sets = (plat != NULL) ? plat->sets : NULL;
  57. nr_sets = (plat != NULL) ? plat->nr_sets : 1;
  58. info->mtd_count = nr_sets;
  59. /* allocate our information */
  60. size = nr_sets * sizeof(*info->mtds);
  61. info->mtds = kmalloc(size, GFP_KERNEL);
  62. if (info->mtds == NULL) {
  63. dev_err(&pdev->dev, "failed to allocate mtd storage\n");
  64. err = -ENOMEM;
  65. goto exit_error;
  66. }
  67. memset(info->mtds, 0, size);
  68. /* initialise all possible chips */
  69. nmtd = info->mtds;
  70. for (setno = 0; setno < nr_sets; setno++, nmtd++) {
  71. pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info);
  72. s3c2410_nand_init_chip(info, nmtd, sets);                                               //里面有校验nandflash
  73. nmtd->scan_res = nand_scan_ident(&nmtd->mtd,                                            //搜索nandflash
  74. (sets) ? sets->nr_chips : 1);
  75. if (nmtd->scan_res == 0) {
  76. s3c2410_nand_update_chip(info, nmtd);
  77. nand_scan_tail(&nmtd->mtd);
  78. s3c2410_nand_add_partition(info, nmtd, sets);                                        //注册分区信息
  79. }
  80. if (sets != NULL)
  81. sets++;
  82. }
  83. err = s3c2410_nand_cpufreq_register(info);
  84. if (err < 0) {
  85. dev_err(&pdev->dev, "failed to init cpufreq support\n");
  86. goto exit_error;
  87. }
  88. if (allow_clk_stop(info)) {
  89. dev_info(&pdev->dev, "clock idle support enabled\n");
  90. clk_disable(info->clk);
  91. }
  92. pr_debug("initialised ok\n");
  93. return 0;
  94. exit_error:
  95. s3c2410_nand_remove(pdev);
  96. if (err == 0)
  97. err = -EINVAL;
  98. return err;
  99. }

MTD通用驱动部分nand_base.c(nand_read:

  1. static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
  2. size_t *retlen, uint8_t *buf)
  3. {
  4. struct nand_chip *chip = mtd->priv;
  5. int ret;
  6. /* Do not allow reads past end of device */
  7. if ((from + len) > mtd->size)
  8. return -EINVAL;
  9. if (!len)
  10. return 0;
  11. nand_get_device(chip, mtd, FL_READING);
  12. chip->ops.len = len;
  13. chip->ops.datbuf = buf;
  14. chip->ops.oobbuf = NULL;
  15. ret = nand_do_read_ops(mtd, from, &chip->ops);                                       //进行读操作的代码
  16. *retlen = chip->ops.retlen;
  17. nand_release_device(mtd);
  18. return ret;
  19. }

nand_do_read_ops:

  1. /**
  2. * nand_do_read_ops - [Internal] Read data with ECC
  3. *
  4. * @mtd:    MTD device structure
  5. * @from:    offset to read from
  6. * @ops:    oob ops structure
  7. *
  8. * Internal function. Called with chip held.
  9. */
  10. static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
  11. struct mtd_oob_ops *ops)
  12. {
  13. int chipnr, page, realpage, col, bytes, aligned;
  14. struct nand_chip *chip = mtd->priv;
  15. struct mtd_ecc_stats stats;
  16. int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
  17. int sndcmd = 1;
  18. int ret = 0;
  19. uint32_t readlen = ops->len;
  20. uint32_t oobreadlen = ops->ooblen;
  21. uint8_t *bufpoi, *oob, *buf;
  22. stats = mtd->ecc_stats;
  23. chipnr = (int)(from >> chip->chip_shift);
  24. chip->select_chip(mtd, chipnr);
  25. realpage = (int)(from >> chip->page_shift);
  26. page = realpage & chip->pagemask;
  27. col = (int)(from & (mtd->writesize - 1));
  28. buf = ops->datbuf;
  29. oob = ops->oobbuf;
  30. while(1) {
  31. bytes = min(mtd->writesize - col, readlen);
  32. aligned = (bytes == mtd->writesize);
  33. /* Is the current page in the buffer ? */
  34. if (realpage != chip->pagebuf || oob) {
  35. bufpoi = aligned ? buf : chip->buffers->databuf;
  36. if (likely(sndcmd)) {
  37. chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);                                              //实际对应了nand_command_lp,cmd命令是0
  38. sndcmd = 0;
  39. }
  40. .........
  41. }

nand_command_lp:

  1. static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
  2. int column, int page_addr)
  3. {
  4. register struct nand_chip *chip = mtd->priv;
  5. /* Emulate NAND_CMD_READOOB */
  6. if (command == NAND_CMD_READOOB) {
  7. column += mtd->writesize;
  8. command = NAND_CMD_READ0;
  9. }
  10. /* Command latch cycle */
  11. chip->cmd_ctrl(mtd, command & 0xff,
  12. NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);                                   //cmd_ctrl来源于底层驱动,在s3c2410_nand_init_chip中赋值了。
  13. .......
  14. }

s3c2410_nand_hwcontrol:

  1. /* s3c2410_nand_hwcontrol
  2. *
  3. * Issue command and address cycles to the chip
  4. */
  5. static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
  6. unsigned int ctrl)
  7. {
  8. struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
  9. if (cmd == NAND_CMD_NONE)
  10. return;
  11. if (ctrl & NAND_CLE)
  12. writeb(cmd, info->regs + S3C2410_NFCMD);                                     //往NFCONT寄存器中写入cmd,cmd来自于nand_command,往上回溯为nand_read.其实就是发送了命令0x00
  13. else
  14. writeb(cmd, info->regs + S3C2410_NFADDR);
  15. }

继续回到nand_command_lp:

  1. ...............
  2. if (column != -1 || page_addr != -1) {
  3. int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
  4. /* Serially input address */
  5. if (column != -1) {
  6. /* Adjust columns for 16 bit buswidth */
  7. if (chip->options & NAND_BUSWIDTH_16)
  8. column >>= 1;
  9. chip->cmd_ctrl(mtd, column, ctrl);                                   //紧接着发送列地址
  10. ctrl &= ~NAND_CTRL_CHANGE;
  11. chip->cmd_ctrl(mtd, column >> 8, ctrl);
  12. }
  13. if (page_addr != -1) {
  14. chip->cmd_ctrl(mtd, page_addr, ctrl);                                //发送行地址
  15. chip->cmd_ctrl(mtd, page_addr >> 8,
  16. NAND_NCE | NAND_ALE);
  17. /* One more address cycle for devices > 128MiB */
  18. if (chip->chipsize > (128 << 20))
  19. chip->cmd_ctrl(mtd, page_addr >> 16,
  20. NAND_NCE | NAND_ALE);
  21. }
  22. }
  23. chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
  24. /*
  25. * program and erase have their own busy handlers
  26. * status, sequential in, and deplete1 need no delay
  27. */
  28. switch (command) {
  29. case NAND_CMD_CACHEDPROG:
  30. case NAND_CMD_PAGEPROG:
  31. case NAND_CMD_ERASE1:
  32. case NAND_CMD_ERASE2:
  33. case NAND_CMD_SEQIN:
  34. case NAND_CMD_RNDIN:
  35. case NAND_CMD_STATUS:
  36. case NAND_CMD_DEPLETE1:
  37. return;
  38. /*
  39. * read error status commands require only a short delay
  40. */
  41. case NAND_CMD_STATUS_ERROR:
  42. case NAND_CMD_STATUS_ERROR0:
  43. case NAND_CMD_STATUS_ERROR1:
  44. case NAND_CMD_STATUS_ERROR2:
  45. case NAND_CMD_STATUS_ERROR3:
  46. udelay(chip->chip_delay);
  47. return;
  48. case NAND_CMD_RESET:
  49. if (chip->dev_ready)
  50. break;
  51. udelay(chip->chip_delay);
  52. chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
  53. NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
  54. chip->cmd_ctrl(mtd, NAND_CMD_NONE,
  55. NAND_NCE | NAND_CTRL_CHANGE);
  56. while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
  57. return;
  58. case NAND_CMD_RNDOUT:
  59. /* No ready / busy check necessary */
  60. chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
  61. NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
  62. chip->cmd_ctrl(mtd, NAND_CMD_NONE,
  63. NAND_NCE | NAND_CTRL_CHANGE);
  64. return;
  65. case NAND_CMD_READ0:
  66. chip->cmd_ctrl(mtd, NAND_CMD_READSTART,                                                    //这里发送了0x30命令
  67. NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
  68. chip->cmd_ctrl(mtd, NAND_CMD_NONE,
  69. NAND_NCE | NAND_CTRL_CHANGE);
  70. /* This applies to read commands */
  71. default:
  72. /*
  73. * If we don't have access to the busy pin, we apply the given
  74. * command delay
  75. */
  76. if (!chip->dev_ready) {
  77. udelay(chip->chip_delay);
  78. return;
  79. }
  80. }
  81. /* Apply this short delay always to ensure that we do wait tWB in
  82. * any case on any machine. */
  83. ndelay(100);
  84. nand_wait_ready(mtd);                                                                          //wait等待
  85. }

MTD系统架构和yaffs2使用、Nandflash驱动设计的更多相关文章

  1. [国嵌攻略][148][MTD系统架构]

    MTD设备概述 Flash在嵌入式系统中是必不可少的,它是bootloader.Linux内核和文件系统的最佳载体.在Linux内核中引入了MTD子系统为NOR Flash和Nand FLash设备提 ...

  2. Java开发架构篇《初识领域驱动设计DDD落地》

    作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 DDD(Domain-Driven Design 领域驱动设计)是由Eric Eva ...

  3. [国嵌攻略][052][NandFlash驱动设计_读]

    NandFlash读数据方式 1.页读,读出页中主数据区的所有数据,提供页地址(行地址) 2.随机读,读出页中指定的存储单元的数据,提供页地址(行地址)和页内偏移(行地址) 代码编写 1.根据Nand ...

  4. [国嵌攻略][054][NandFlash驱动设计_写]

    Nand Flash支持按页写和随机写两种方式,在下面实现的是按页写.闪存在写数据时,只能写入1,不能写入0,所以写函数必须和擦除函数一起使用,并且擦除函数是按块擦除. /************** ...

  5. [.NET领域驱动设计实战系列]专题二:结合领域驱动设计的面向服务架构来搭建网上书店

    一.前言 在前面专题一中,我已经介绍了我写这系列文章的初衷了.由于dax.net中的DDD框架和Byteart Retail案例并没有对其形成过程做一步步分析,而是把整个DDD的实现案例展现给我们,这 ...

  6. IDDD 实现领域驱动设计-SOA、REST 和六边形架构

    上一篇:<IDDD 实现领域驱动设计-架构之经典分层> 阅读目录: SOA-面向服务架构 REST 与 RESTful 资源(Resources) 状态(State) 六边形架构 DDD ...

  7. 领域驱动设计(Domain Driven Design)参考架构详解

    摘要 本文将介绍领域驱动设计(Domain Driven Design)的官方参考架构,该架构分成了Interfaces.Applications和Domain三层以及包含各类基础设施的Infrast ...

  8. [转载]领域驱动设计(Domain Driven Design)参考架构详解

    摘要 本文将介绍领域驱动设计(Domain Driven Design)的官方参考架构,该架构分成了Interfaces.Applications和Domain三层以及包含各类基础设施的Infrast ...

  9. saas系统架构经验总结

    2B Saas系统最近几年都很火.很多创业公司都在尝试创建企业级别的应用 cRM, HR,销售, Desk Saas系统.很多Saas创业公司也拿了大额风投.毕竟Saas相对传统软件的优势非常明显. ...

随机推荐

  1. spring-boot和redis的缓存使用

    1.运行环境 开发工具:intellij idea JDK版本:1.8 项目管理工具:Maven 4.0.0 2.Maven Plugin管理 pom.xml配置代码: <?xml versio ...

  2. shell脚本学习 (10) 从结构化文本提取数据

    1提取/ 后的数据 sed -e 's=/.*==' do.txt 2 sed -e 's=/.*=='\ -e 's=^\([^:]*\):\(.*\) \([^ ]*\)=\1:\3, \2=' ...

  3. HDU 6073 Matching In Multiplication —— 2017 Multi-University Training 4

    Matching In Multiplication Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K ( ...

  4. spring boot项目打包成war

    一.修改打包类型 在pom.xml中修改 <packaging>war</packaging> 二.移除嵌入式tomcat插件,并以依赖方式引入 <dependency& ...

  5. CPU C-States Power Saving Modes

    http://www.hardwaresecrets.com/article/611 Everything You Need to Know About the CPU C-States Power ...

  6. Design:设计(活动)百科

    ylbtech-Design:设计(活动)百科 设计是把一种设想通过合理的规划.周密的计划.通过各种感觉形式传达出来的过程.人类通过劳动改造世界,创造文明,创造物质财富和精神财富,而最基础.最主要的创 ...

  7. 【ngx-ueditor】百度编辑器按下Shift键不触发contentChange事件

    背景:基于Angular 6,引入ngx-ueditor 发现现象:如果以Shift键+任意键结尾,则ngModel会丢失包含shift键的字符 例如:输入“ABC+AB++++”,则ngModel中 ...

  8. Bootstarp-源码分析-alert.js v3.x和v4.x的对比

    一些概念 1. 使用 data-api 调用 就是给所有带有data-dismiss="alert"的元素绑定点击事件 v3.x: $(document).on('click.bs ...

  9. idhttp提交post

    var Param:TStringList; RStream:TMemoryStream;begin Param:=TStringList.Create; RStream:=TMemoryStream ...

  10. Python笔记(十)_迭代器与生成器

    迭代 用for...in来遍历一个可迭代对象的过程就叫迭代 可迭代对象:列表.元组.字典.集合.字符串.生成器 可以使用内置函数isinstance()判断一个对象是否是可迭代对象 >>& ...