洛谷P2606 [ZJOI2010]排列计数 组合数学+DP
题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值。
解法:我们仔细观察这个pi>=pi/2,想到什么了?像不像二叉树中每个点i和它的两个儿子的编号2i和2i+1。
那么我们可以想象每个点i想它的两个儿子2i/2i+1连边,加上Pi>Pi/2这个条件,那么这棵二叉树就是一棵小根堆。那么我们考虑用dp解决这道题,
设dp[i]表示i个不同的数组成一棵大小为i的小根堆的方案数,状态转移方程为dp[i]=C(i-1,l[i]) * dp[l[i]] * dp[r[i]] ;解释一下:这里的l[i]/r[i]代表大小为i的完全二叉树(为什么要是完全的?因为题目要求的序号是连续的)的左/右子树大小。这个方程的意思是从i-1个数里面选择l[i]个数作为左子树方案数乘以剩下r[i]个数作为右子树方案数。
那么我们预处理l[i]/r[i]就可以计算答案了。
注意此题p有可能>=n,所以要用Lucas定理计算组合数。
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1e6+;
int n,P,l[N],r[N],dp[N]; int power(int x,int p) {
int ret=;
for (;p;p>>=) {
if (p&) ret=(LL)ret*x%P;
x=(LL)x*x%P;
}
return ret;
} int fac[N],inv[N];
void prework(int n) {
fac[]=; inv[]=;
for (int i=;i<=n;i++) {
fac[i]=(LL)i*fac[i-]%P;
inv[i]=power(fac[i],P-);
}
l[]=;
for(int i=,g=;i<=n;g<<=,i+=g) {
for(int j=;j<=g;j++) l[i+j-]=l[i+j-]+;
for(int j=;j<=g;j++) l[i+g+j-]=l[i+g+j-];
}
for (int i=;i<=n;i++) r[i]=i--l[i];
} int C(int n,int m) {
if (n>=P || m>=P) return (LL)C(n/P,m/P)*C(n%P,m%P)%P;
else return (LL)fac[n]*inv[m]%P*inv[n-m]%P;
} int main()
{
cin>>n>>P;
prework(n);
dp[]=dp[]=;
for (int i=;i<=n;i++)
dp[i]=(LL)C(i-,l[i])*dp[l[i]]%P*dp[r[i]]%P;
cout<<dp[n]<<endl;
return ;
}
洛谷P2606 [ZJOI2010]排列计数 组合数学+DP的更多相关文章
- 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)
题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- ●洛谷P2606 [ZJOI2010]排列计数
题链: https://www.luogu.org/problemnew/show/P2606题解: 组合数(DP),Lucas定理 首先应该容易看出,这个排列其实是一个小顶堆. 然后我们可以考虑dp ...
- 洛谷P2606 [ZJOI2010]排列计数(数位dp)
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- 洛谷P2606 [ZJOI2010]排列计数
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- 洛谷P4071 [SDOI2016] 排列计数 [组合数学]
题目传送门 排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...
- 洛谷P2602 [ZJOI2010]数字计数(数位dp)
数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...
- P2606 [ZJOI2010]排列计数
P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
随机推荐
- Planting Trees
Planting Trees 给定N*N矩阵,求子矩形满足里面最大元素最小元素之差不超过M 单调队列 枚举上边界,下边界,及右边界, 用两个单调队列,一个维护最大值,一个维护最小 求左边界 #incl ...
- Alexa TOP 100万的域名列表
Alexa是一家专门发布网站世界排名的网站,是亚马逊公司的一家子公司.Alexa每天在网上搜集多达几十亿的网址链接,而且为其中的每一个网站进行了排名. Alexa通过Alexa官网查询好像TOP 50 ...
- [CSP-S模拟测试]:环(图论+期望)
题目传送门(内部题79) 输入格式 第一行读入两个整数$n,e$表示节点数及$cwystc$已确定的有向边边数. 接下来$e$行,每行两个整数$x,y$描述$cwystc$确定的边. 输出格式 输出一 ...
- P1439 【模板】最长公共子序列(LCS)
先来看一看普通的最长公共子序列 给定字符串A和B,求他们的最长公共子序列 DP做法: 设f[i][j]表示A[1~i]和B[1~j]的最长公共子序列的长度 那么f[i][j]=max(f[i-1][j ...
- java操作JSON字符串转换成对象的时候如何可以不建立实体类也能获取数据
引入依赖 <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson& ...
- Delphi XE2 之 FireMonkey 入门(23) - 数据绑定: TBindingsList: TBindExpression
准备用 TBindingsList 重做上一个例子. 可以先把 TBindingsList 理解为是一组绑定表达式(TBindExpression)的集合;官方应该是提倡在设计时完成 TBindExp ...
- javaScript 递归 闭包 私有变量
递归 递归的概念 在程序中函数直接或者间接调用自己. 跳出结构,有了跳出才有结果. 递归的思想 递归的调用,最终还是要转换为自己这个函数. 应用 function sum(n){ if(n == ...
- rac的一次问题 ORA-01565: error in identifying file '+DATA/bol/spfilebol.ora'
昨天安装的测试环境的rac--2节点 CentOS release 6.8 (Final) SQL*Plus: Release 11.2.0.4.0 Production 今天测试突然出现问题 在ra ...
- Altium Designer chapter7总结
PCB设计高级进阶中需要注意如下: (1)PCB层集合管理:对于后期的处理可以看到不同层的相关信息. (2)内电层的分割:对于多层板的设计,特别是电源层中有不同类型的电源时需要考虑电源的分割. (3) ...
- VMware虚拟机上运行Manjaro系统
Manjaro系统是从ArchLinux系统发展而来.它的软件安装工具不是ubuntu的apt-get,不是yum,而是pacman. 在虚拟机安装好Manjaro后, 安装虚拟机工具VM-Tools ...