这个时候考过:安师大附中集训 Day2

当时看shadowice1984的做法,但是没有亲自写,,,

雅礼集训考试的时候鼓捣半天,被卡常到80pts,要跑9s

卡不动。

正解实际是:

3重容斥

1.随便选-一个对角线空+两个对角线空

2.2^m枚举每一个位置放不放

3.对角线空——若干个位置不空,再容斥

A.一个对角线,枚举i个放在对角线上,C(*,i)组合数,剩下的方案数是(n-sz-i)!

B.两个对角线,按圈DP,f[i][j]i圈,选了j个在对角线上方案数。枚举四个角放一个、对角放两个,都不放7种情况。

常数很小。

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
#define pb push_back
#define solid const auto &
#define enter cout<<endl
#define pii pair<int,int>
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);(fl==true)&&(x=-x);}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');}
namespace Modulo{
const int mod=;
il int ad(int x,int y){return x+y>=mod?x+y-mod:x+y;}
il int sub(int x,int y){return ad(x,mod-y);}
il int mul(int x,int y){return (ll)x*y%mod;}
il void inc(int &x,int y){x=ad(x,y);}
il void inc2(int &x,int y){x=mul(x,y);}
il int qm(int x,int y=mod-){int ret=;while(y){if(y&) ret=mul(x,ret);x=mul(x,x);y>>=;}return ret;}
template<class ...Args>il int ad(const int a,const int b,const Args &...args) {return ad(ad(a,b),args...);}
template<class ...Args>il int mul(const int a,const int b,const Args &...args) {return mul(mul(a,b),args...);}
}
using namespace Modulo;
namespace Miracle{
const int N=;
const int M=;
int n,m;
int X[M],Y[M];
int hk[N],lk[N];
int f[N][N];
int c[N][N];
int jie[N],inv[N];
int C(int n,int m){
if(n<||m<||n<m) return ;
return c[n][m];
}
int ans,two,one1,one2;
int dp1(int sz){
int lim=n;
for(reg i=;i<=n;++i){
lim-=(hk[i]|lk[i]);
}
int ret=;
for(reg i=;i<=lim;++i){
inc(ret,mul(C(lim,i),jie[n-sz-i],i&?mod-:));
}
return ret;
}
int dp2(int sz){
int ret=;
int lim=n;
for(reg i=;i<=n;++i){
lim-=(hk[i]|lk[n-i+]);
}
for(reg i=;i<=lim;++i){
inc(ret,mul(C(lim,i),jie[n-sz-i],i&?mod-:));
}
return ret;
}
int dp3(int sz){
memset(f,,sizeof f); // cout<<"dp3----------- "<<sz<<endl;
// prt(hk,1,n);
// prt(lk,1,n); int U,D,L,R;
int up=(n)/;
int lim=n-sz;
if(n&){
U=D=L=R=(n+)/;
f[][]=;
f[][]=(lk[L]==&&hk[U]==);
--U;--L;++R;++D;
}else{
U=L=(n/);D=R=(n/)+;
f[][]=;
}
for(reg i=;i<up;++i){
int o=min(*i+(n&),lim);
for(reg j=;j<=o;++j){
if(f[i][j]){
int v=f[i][j];
inc(f[i+][j],v);
// if(lk[R]+hk[U]==0)inc(f[i+1][j+1],v);
// if(lk[R]+hk[D]==0)inc(f[i+1][j+1],v);
// if(lk[L]+hk[U]==0)inc(f[i+1][j+1],v);
// if(lk[L]+hk[D]==0)
inc(f[i+][j+],mul((lk[R]+hk[U]==)+(lk[R]+hk[D]==)+(lk[L]+hk[U]==)+(lk[L]+hk[D]==),v)); if(lk[R]+hk[U]==&&lk[L]+hk[D]==)inc(f[i+][j+],v);
if(lk[R]+hk[D]==&&lk[L]+hk[U]==)inc(f[i+][j+],v);
}
}
--U;--L;++R;++D;
}
int ret=;
for(reg j=;j<=lim;++j){
inc(ret,mul(f[up][j],jie[n-sz-j],j&?mod-:));
}
// cout<<" ret "<<ret<<endl;
return ret;
}
int dp4(int sz){
return jie[n-sz];
}
void clear(){
memset(f,,sizeof f);
memset(X,,sizeof X);
memset(Y,,sizeof Y);
ans=;
one1=;one2=;two=;
}
int main(){ int t;
rd(t);
c[][]=;
n=;
for(reg i=;i<=n;++i){
c[i][]=;
for(reg j=;j<=n;++j){
c[i][j]=ad(c[i-][j],c[i-][j-]);
}
}
jie[]=;
for(reg i=;i<=n;++i) jie[i]=mul(jie[i-],i); while(t--){
clear();
rd(n);rd(m);
for(reg i=;i<=m;++i){
rd(X[i]);rd(Y[i]);
++X[i];++Y[i];
}
// ans=1;
// for(reg i=1;i<=n;++i) inc2(ans,i);
ans=; for(reg s=;s<(<<m);++s){
memset(hk,,sizeof hk);
memset(lk,,sizeof lk);
int sz=__builtin_popcount(s);
int c=(sz&)?mod-:;
bool fl1=true,fl2=true,fl=true;
for(reg i=;i<=m;++i){
if((s>>(i-))&){
if(X[i]==Y[i]) fl1=false;
if(X[i]+Y[i]==n+) fl2=false;
if(hk[X[i]]) fl=false;
++hk[X[i]];
if(lk[Y[i]]) fl=false;
++lk[Y[i]];
}
}
// cout<<" s "<<s<<" "<<fl1<<" "<<fl2<<" "<<fl<<endl;
if(fl&&fl1){
inc(one1,mul(c,dp1(sz)));
}
if(fl&&fl2){
inc(one2,mul(c,dp2(sz)));
}
if(fl&&fl1&&fl2){
inc(two,mul(c,dp3(sz)));
}
if(fl){
inc(ans,mul(c,dp4(sz)));
}
}
// cout<<" one1 "<<one1<<endl;
// cout<<" one2 "<<one2<<endl;
// cout<<" two "<<two<<endl;
inc(ans,ad(mod-one1,mod-one2,two));
// cout<<ans<<endl;l
printf("%d\n",ans);
}
return ;
} }
signed main(){
// freopen("rook.in","r",stdin);
// freopen("rook.out","w",stdout);
Miracle::main();
return ;
} /*
Author: *Miracle*
*/

疯狂容斥

对角线至少选择一个这种很麻烦。必须考虑有没有选择。

格子都不能选很麻烦。要考虑给后面预留,只能状压

对角线>=1——>都是0

都是0——>有一些放了

格子都不能选——>一些可以选

以及按圈DP

对称,方便同时处理可能产生矛盾的情况,避免状压。

再探容斥好题——ROOK的更多相关文章

  1. hdu1796:容斥入门题

    简单的容斥入门题.. 容斥基本的公式早就知道了,但是一直不会写. 下午看到艾神在群里说的“会枚举二进制数就会容斥”,后来发现还真是这样.. 然后直接贴代码了 #include <iostream ...

  2. hdu 1796 How many integers can you find 容斥第一题

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  3. HDU 6106 17多校6 Classes(容斥简单题)

    Problem Description The school set up three elective courses, assuming that these courses are A, B, ...

  4. [Hdu-5155] Harry And Magic Box[思维题+容斥,计数Dp]

    Online Judge:Hdu5155 Label:思维题+容斥,计数Dp 题面: 题目描述 给定一个大小为\(N*M\)的神奇盒子,里面每行每列都至少有一个钻石,问可行的排列方案数.由于答案较大, ...

  5. bzoj4665 小w的喜糖(dp+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 222  Solved: 130[Submit][Status][Discuss ...

  6. 【洛谷】1600:天天爱跑步【LCA】【开桶】【容斥】【推式子】

    P1600 天天爱跑步 题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个 ...

  7. 【BZOJ3622】已经没有什么好害怕的了(动态规划,容斥)

    [BZOJ3622]已经没有什么好害怕的了(动态规划,容斥) 题面 BZOJ 题解 很明显的,这类问题是要从至少变成恰好的过程,直接容斥即可. 首先我们要求的是(糖果>药片)=(药片>糖果 ...

  8. 【BZOJ1853】幸运数字(搜索,容斥)

    [BZOJ1853]幸运数字(搜索,容斥) 题面 BZOJ 洛谷 题解 成功轰下洛谷rk1,甚至超越了一个打表选手 这题思路很明显吧,先搞出来所有范围内的合法数字,然后直接容斥, 容斥的话显然没有别的 ...

  9. 【BZOJ4455】小星星(动态规划,容斥)

    [BZOJ4455]小星星(动态规划,容斥) 题面 BZOJ 洛谷 Uoj 题解 题意说简单点就是给定一张\(n\)个点的图和一棵\(n\)个点的树,现在要让图和树之间的点一一对应,并且如果树上存在一 ...

随机推荐

  1. Java 基础-异常处理

    在 Java 中声明了很多异常类,每个异常类都表示一种运行错误.程序运行过程中发生一个可识别的运行错误时(可以找到与错误匹配的异常类,例如被除数为 0 时会触发 java.lang.Arithmeti ...

  2. 修改JAVA_HOME失效

    在修改JDK的安装目录的情况下会出现失效的时候,因为jdk在安装的时候自己在path中添加了 C:\ProgramData\Oracle\Java\javapath 这个路径. 解决: 删除 path ...

  3. C++笔记(2)——一些语法基础知识以及基本算法知识

    今天和PAT无直接相关的关系,主要是关于一些语法/算法的笔记,因为我发现自己的基础还没有打扎实,有些时候看别人的代码还会觉得一头雾水,不明白代码的含义. 一些C/C++语法 先从语法开始吧.这部分很琐 ...

  4. python爬虫——爬取淘票票正在热映电影

    今天正好学习了一下python的爬虫,觉得收获蛮大的,所以写一篇博客帮助想学习爬虫的伙伴们. 这里我就以一个简单地爬取淘票票正在热映电影为例,介绍一下一个爬虫的完整流程. 首先,话不多说,上干货——源 ...

  5. html5 WebSocket的Js实例教程

    详细解读一个简单+ ,附带完整的javascript websocket实例源码,以及实例代码效果演示页面,并对本实例的核心代码进行了深入解读. 从WebSocket通讯三个阶段(打开握手.数据传递. ...

  6. Proteus报错处理经验:power rails ‘GND’ and 'VCC/VDD' are interconnected in net VCC

    1 前言 初学Proteus,画好原理图后遇到了power rails 'GND' and 'VCC/VDD' are interconnected in net VCC的报错. 尝试了网上的解决办法 ...

  7. [转]JavaScript构造函数及原型对象

    JavaScript中没有类的概念,所以其在对象创建方面与面向对象语言有所不同. JS中对象可以定义为”无序属性的集合”.其属性可以包含基本值,对象以及函数.对象实质上就是一组没有特定顺序的值,对象中 ...

  8. python中pycharm中.py文件调用一个.py文件的函数

    在相同文件夹内调用函数: file1.py def add(x,y): print('和为:%d'%(x+y)) file2.py import A A.add(1,2)

  9. 监听器 ServletRequestAttributeListener&ServletRequestListener详解

    在web开发中,监听器不仅可以对Application监听,同时还可以对seesion和request对象进行监听: 该文章主要演示的是对request对象的创建和request属性的监听. 项目结构 ...

  10. java_第一年_JavaWeb(12)

    SimpleTag标签 定义了五个方法:setJspContext.setJspBody.setParent和getParent以及最重要的doTag方法(完成了所有的业务逻辑): setJspCon ...