关于hstack和Svstack

import numpy as np
>>> a = np.array((1,2,3))
>>> a
array([1, 2, 3])
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],
[2, 3, 4]])
>>> a = np.array([[1],[2],[3]])
>>> a
array([[1],
[2],
[3]])
>>> b = np.array([[2],[3],[4]])
>>> b
array([[2],
[3],
[4]])
>>> np.hstack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])
>>> np.vstack((a,b))
array([[1],
[2],
[3],
[2],
[3],
[4]])

>>> cluster1 = np.random.uniform(0.5, 1.5, (2, 10))
>>> cluster1
array([[ 0.60849062, 0.80373879, 1.09272159, 1.17109014, 0.54168381,1.30649224, 0.82900102, 0.92583578, 0.79059036, 1.41629785],
[ 1.0175007 , 0.88072217, 0.54571384, 1.33015288, 1.27191768,0.57376194, 0.92339705, 0.97192802, 1.1190226 , 1.41452819]])
>>> cluster2 = np.random.uniform(3.5, 4.5, (2, 10))
>>> cluster2
array([[ 3.8001814 , 3.90072154, 4.02836533, 3.6499184 , 3.64592853,3.65085651, 3.75006055, 4.33185041, 3.70100798, 3.74613316],
[ 3.80366592, 3.80682426, 4.04532742, 4.3735719 , 4.38926895,3.78186945, 4.29025804, 3.66141714, 3.53704142, 3.83882232]])

#第一个数组和第二个数组在水平位置连接,2行*20列
>>> np.hstack((cluster1, cluster2)) #水平
array([[ 0.60849062, 0.80373879, 1.09272159, 1.17109014, 0.54168381,1.30649224, 0.82900102, 0.92583578, 0.79059036, 1.41629785,3.8001814 , 3.90072154, 4.02836533, 3.6499184 , 3.64592853,3.65085651, 3.75006055, 4.33185041, 3.70100798, 3.74613316],
[ 1.0175007 , 0.88072217, 0.54571384, 1.33015288, 1.27191768,0.57376194, 0.92339705, 0.97192802, 1.1190226 , 1.41452819,3.80366592, 3.80682426, 4.04532742, 4.3735719 , 4.38926895,3.78186945, 4.29025804, 3.66141714, 3.53704142, 3.83882232]])
>>> X = np.hstack((cluster1, cluster2)).T
#转置后20行*2列
>>> X
array([[ 0.60849062, 1.0175007 ],
[ 0.80373879, 0.88072217],
[ 1.09272159, 0.54571384],
[ 1.17109014, 1.33015288],
[ 0.54168381, 1.27191768],
[ 1.30649224, 0.57376194],
[ 0.82900102, 0.92339705],
[ 0.92583578, 0.97192802],
[ 0.79059036, 1.1190226 ],
[ 1.41629785, 1.41452819],
[ 3.8001814 , 3.80366592],
[ 3.90072154, 3.80682426],
[ 4.02836533, 4.04532742],
[ 3.6499184 , 4.3735719 ],
[ 3.64592853, 4.38926895],
[ 3.65085651, 3.78186945],
[ 3.75006055, 4.29025804],
[ 4.33185041, 3.66141714],
[ 3.70100798, 3.53704142],
[ 3.74613316, 3.83882232]])

>>> Y = np.vstack((cluster1, cluster2))   #垂直
>>> Y
array([[ 0.60849062, 0.80373879, 1.09272159, 1.17109014, 0.54168381,1.30649224, 0.82900102, 0.92583578, 0.79059036, 1.41629785],
         [ 1.0175007 , 0.88072217, 0.54571384, 1.33015288, 1.27191768,0.57376194, 0.92339705, 0.97192802, 1.1190226 , 1.41452819],
         [ 3.8001814 , 3.90072154, 4.02836533, 3.6499184 , 3.64592853,3.65085651, 3.75006055, 4.33185041, 3.70100798, 3.74613316],
         [ 3.80366592, 3.80682426, 4.04532742, 4.3735719 , 4.38926895,3.78186945, 4.29025804, 3.66141714, 3.53704142, 3.83882232]])

>>> Y=Y.T
>>> Y
array([[ 0.60849062, 1.0175007 , 3.8001814 , 3.80366592],
[ 0.80373879, 0.88072217, 3.90072154, 3.80682426],
[ 1.09272159, 0.54571384, 4.02836533, 4.04532742],
[ 1.17109014, 1.33015288, 3.6499184 , 4.3735719 ],
[ 0.54168381, 1.27191768, 3.64592853, 4.38926895],
[ 1.30649224, 0.57376194, 3.65085651, 3.78186945],
[ 0.82900102, 0.92339705, 3.75006055, 4.29025804],
[ 0.92583578, 0.97192802, 4.33185041, 3.66141714],
[ 0.79059036, 1.1190226 , 3.70100798, 3.53704142],
[ 1.41629785, 1.41452819, 3.74613316, 3.83882232]])
>>>

关于hstack和Svstack的更多相关文章

  1. Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate()

    感觉numpy.hstack()和numpy.column_stack()函数略有相似,numpy.vstack()与numpy.row_stack()函数也是挺像的. stackoverflow上也 ...

  2. numpy中的stack操作:hstack()、vstack()、stack()、dstack()、vsplit()、concatenate()

    stack():沿着新的轴加入一系列数组. vstack():堆栈数组垂直顺序(行) hstack():堆栈数组水平顺序(列). dstack():堆栈数组按顺序深入(沿第三维). concatena ...

  3. numpy中stack、hstack,vstack,dstack函数功能解释

    https://blog.csdn.net/Riverhope/article/details/78922006 https://blog.csdn.net/ygys1234/article/deta ...

  4. 【python】Numpy中stack(),hstack(),vstack()函数详解

    转自 https://blog.csdn.net/csdn15698845876/article/details/73380803 这三个函数有些相似性,都是堆叠数组,里面最难理解的应该就是stack ...

  5. python 中numpy中函数hstack用法和作用

    定义: Stack arrays in sequence horizontally (column wise). Take a sequence of arrays and stack them ho ...

  6. numpy中数据合并,stack ,concentrate,vstack,hstack

    在python的numpy库中有一个函数np.stack(), 看过一些博文后觉得别人写的太复杂,然后自己有了一些理解之后做了一些比较简单的解释 np.stack 首先stack函数用于堆叠数组,其调 ...

  7. 深度学习原理与框架-神经网络-cifar10分类(代码) 1.np.concatenate(进行数据串接) 2.np.hstack(将数据横着排列) 3.hasattr(判断.py文件的函数是否存在) 4.reshape(维度重构) 5.tanspose(维度位置变化) 6.pickle.load(f文件读入) 7.np.argmax(获得最大值索引) 8.np.maximum(阈值比较)

    横1. np.concatenate(list, axis=0) 将数据进行串接,这里主要是可以将列表进行x轴获得y轴的串接 参数说明:list表示需要串接的列表,axis=0,表示从上到下进行串接 ...

  8. [转]Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate()

    Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate() 觉得有用的话,欢迎一起讨论相互学习~Follow Me ...

  9. Numpy:np.vstack()&np.hstack() flat/flatten

    一 .  np.vstack: 按垂直方向(行顺序)堆叠数组构成一个新的数组 In[3]: import numpy as np In[4]: a = np.array([[1,2,3]]) a.sh ...

随机推荐

  1. [CSP-S模拟测试]:最大值(数学+线段树)

    题目背景 $Maxtir$最喜欢最大值. 题目传送门(内部题128) 输入格式 第$1$行输入四个正整数$n,m,q$. 第$2$至$n+1$行中,第$i+1$行输入魔法晶石$i$的三种属性$(x_i ...

  2. mongo注解详解

    1.@Entity如果你想通过Morphia把你的对象保存到Mongo中,你首先要做的是使用@Entity注解你的类:@Entity(value="comm_user_favorite_co ...

  3. 菜鸟requireJS教程---1、初识requirejs

    菜鸟requireJS教程---1.初识requirejs 一.总结 一句话总结: Using a modular script loader like RequireJS will improve ...

  4. 后盾网lavarel视频项目---3、lavarel中子控制器继承父控制器以判断是否登录

    后盾网lavarel视频项目---3.lavarel中子控制器继承父控制器以判断是否登录 一.总结 一句话总结: 在common控制器的构造方法中验证登录中间件,其它的控制器继承common控制器 p ...

  5. 在Linux上安装ipmitool

    https://blog.csdn.net/bnanoou/article/details/43985839

  6. golang channel关闭后,是否可以读取剩余的数据

    golang channel关闭后,其中剩余的数据,是可以继续读取的. 请看下面的测试例子. 创建一个带有缓冲的channel,向channel中发送数据,然后关闭channel,最后,从channe ...

  7. Pycharm 常用快捷键-Windows版

    常用快捷键: Ctrl + / 行注释(可选中多行) Ctrl + Alt + L 代码格式化 Tab / Shift + Tab 缩进.不缩进当前行(可选中多行) Ctrl + D 复制选定的区域 ...

  8. nodejs之express中间件cookie-parser使用

    知识点: * .domain的使用,.aaa.com的域名都共享这个cookie信息 * res.cookie(,domain:'.aaa.com'}); * .获取所有cookie,设置cookie ...

  9. java:Servlet(Create,LifeCycle,ServletWeb.xml文件的配置,交互式,Tomcat文件分析,单例安全模式)

    1.Servlet: Servlet 的主要功能在于交互式地浏览和修改数据,生成动态 Web 内容.这个过程为: 客户端发送请求至服务器端: 服务器将请求信息发送至 Servlet: Servlet ...

  10. CSS元素隐藏

    { display: none; /* 不占据空间,无法点击 */ } /*************************************************************** ...