╰( ̄▽ ̄)╭

对于一张给定的 运输网络 ,Alice 先确定一个最大流 ,如果有多种解, Alice 可以任选一种; 之后 Bob在每条边上分配单位花费 (单位花费必须是非负实数), 要求所有边的单位花费之和等于 P。总费用等于每一条边 的实际流量乘以该边的单位花费。 需要注意到, Bob在分配单位花费之前,已经知道Alice 所给出的最大流方案。

现在 Alice 希望总费用尽量小,而Bob希望总费用尽量大。我们想知道, 如 果两个人都执行最优策略 ,最大流的值和总费用分别为多少。

对于 100% 的测试数据: N≤100 ,M≤1000 。

对于 100% 的测试数据: 所有点的编号在 1..N 范围内。 1≤每条边 的最大 流 量≤50000 。1≤P≤10 。给定运输网络中不会有起点和 终点 相同的边。

(⊙ ▽ ⊙)

显然Bob要把所有费用全部分配给实际流量最大的边。

所以Alice在满足最大流最大之余,使得流量最大的边最小

所以二分后再用最大流判断就可以了。

( ̄~ ̄)

#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<math.h>
#include<string.h>
#define ll long long
#define eps 10e-7
using namespace std;
const char* fin="ex3215.in";
const char* fout="ex3215.out";
const int inf=0x7fffffff;
const int maxn=2007;
int n,m,n1,i,j,k;
int a[maxn][2],fi[maxn],ne[maxn],la[maxn],tot;
double l,r,mid,va[maxn],b[maxn],Ans;
int bz[maxn],card[maxn];
double Abs(double a){
return a>0?a:-a;
}
void add_line(int a,int b,double c){
tot++;
ne[tot]=fi[a];
la[tot]=b;
va[tot]=c;
fi[a]=tot;
}
void add(int a,int b,double c){
add_line(a,b,c);
add_line(b,a,0);
}
double gap(int v,double flow){
int i,k;
double use=0,j;
if (v==n) return flow;
for (k=fi[v];k;k=ne[k])
if (bz[la[k]]+1==bz[v] && Abs(va[k])>eps){
j=gap(la[k],min(va[k],flow-use));
use+=j;
va[k]-=j;
va[k^1]+=j;
if (Abs(flow-use)<eps || bz[1]==n) return use;
}
if (!--card[bz[v]]) bz[1]=n;
card[++bz[v]]++;
return use;
}
double flow(){
double ans=0;
memset(card,0,sizeof(card));
memset(bz,0,sizeof(bz));
card[0]=n;
while (bz[1]<n){
ans+=gap(1,inf);
}
return ans;
}
bool judge(double MAX){
int i,j,k;
memset(fi,0,sizeof(fi));
tot=1;
for (i=1;i<=m;i++) add(a[i][0],a[i][1],min(MAX,b[i]));
return Abs(flow()-Ans)<eps;
}
int main(){
scanf("%d%d%d",&n,&m,&n1);
tot=1;
for (i=1;i<=m;i++) scanf("%d%d%lf",&a[i][0],&a[i][1],&b[i]),add(a[i][0],a[i][1],b[i]);
Ans=flow();
l=0;
r=50000;
while (r-l>eps){
mid=(l+r)/2;
if (judge(mid)) r=mid;
else l=mid;
}
printf("%d\n%.4lf",int(Ans+eps),l*n1 );
return 0;
}

(⊙v⊙)

要注意的是网络流的实现时的问题:

double gap(int v,double flow){
int i,k;
double use=0,j;
if (v==n) return flow;
for (k=fi[v];k;k=ne[k])
if (bz[la[k]]+1==bz[v] && Abs(va[k])>eps){
j=gap(la[k],min(va[k],flow-use));
use+=j;
va[k]-=j;
va[k^1]+=j;
if (Abs(flow-use)<eps || bz[1]==n) return use;
}
if (!--card[bz[v]]) bz[1]=n;
card[++bz[v]]++;
return use;
}

1.三个中两个return返回的都是use;

2.当use==flow使,直接返回use;

3.到达汇点,返回flow。

【JZOJ3215】【SDOI2013】费用流的更多相关文章

  1. BZOJ3130: [Sdoi2013]费用流[最大流 实数二分]

    3130: [Sdoi2013]费用流 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 960  Solved: 5 ...

  2. bzoj千题计划133:bzoj3130: [Sdoi2013]费用流

    http://www.lydsy.com/JudgeOnline/problem.php?id=3130 第一问就是个最大流 第二问: Bob希望总费用尽量大,那肯定是把所有的花费加到流量最大的那一条 ...

  3. P3305 [SDOI2013]费用流

    题目描述 Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识. 最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量. 一个合法的网络流方案必须满足: ...

  4. luogu P3305 [SDOI2013]费用流

    题目链接 bz似乎挂了... luogu P3305 [SDOI2013]费用流 题解 dalao告诉我,这题 似乎很水.... 懂了题目大意就可以随便切了 问1,最大流 问2,二分最大边权求,che ...

  5. BZOJ 3130: [Sdoi2013]费用流 网络流+二分

    3130: [Sdoi2013]费用流 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1230  Solved: ...

  6. BZOJ 3130: [Sdoi2013]费用流 网络流 二分 最大流

    https://www.lydsy.com/JudgeOnline/problem.php?id=3130 本来找费用流的题,权当复习一下网络流好了. 有点麻烦的是double,干脆判断大小或者二分增 ...

  7. BZOJ3130 [Sdoi2013]费用流

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=3130 这题codevs上也有,不过数据挂了[要A得看discuss]. 题目大意: Ali ...

  8. bzoj 3130 [Sdoi2013]费用流(二分,最大流)

    Description Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识.    最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络 ...

  9. [SDOI2013]费用流

    然而这是一道网络流... 如果满足Bob,使总费用最大: 设最大流的每条边流量(不是容量)为w[i],分配到每条边的费用为p[i],最大流量为wmax,p[i]的和为P 那么显然w[i] * p[i] ...

  10. Luogu P3305 [SDOI2013]费用流 二分 网络流

    题目链接 \(Click\) \(Here\) 非常有趣的一个题目. 关键结论:所有的单位费用应该被分配在流量最大的边上. 即:在保证最大流的前提下,使最大流量最小.这里我们采用二分的方法,每次判断让 ...

随机推荐

  1. 08_springmvc数据回显和@ModelAttribute注解详解

    一.数据回显 提交后,如果出现错误,将刚才提交的数据回显到刚才的提交页面. 二.pojo数据回显方法 1.springmvc默认对pojo数据进行回显. pojo数据传入controller方法后,s ...

  2. https证书加密

    对称加密 浏览器向服务端发送请求时,服务端首先给浏览器发送一个秘钥,浏览器用秘钥对传输的数据进行加密后发送给浏览器,浏览器拿到加密后的数据使用秘钥进行解密 非对称加密 服务端通过rsa算法生成一个公钥 ...

  3. Tornado Demo1---webspider分析

    Demo源码地址 https://github.com/CHUNL09/tornado/tree/master/demos/webspider 这个Demo的作用是用来获取特定URL的网页中的链接(链 ...

  4. 联想 Z470个人安装黑苹果参考

    笔记本是联想 Z470,cpu i3-2350M 傻瓜图文式]Win系统下制作U盘CLOVER引导 EDIT部分 进去黑屏 U盘引导盘

  5. 使用由 Python 编写的 lxml 实现高性能 XML 解析

    lxml 简介 Python 从来不出现 XML 库短缺的情况.从 2.0 版本开始,它就附带了 xml.dom.minidom 和相关的 pulldom 以及 Simple API for XML ...

  6. Miller Rabin算法学习笔记

    定义: Miller Rabin算法是一个随机化素数测试算法,作用是判断一个数是否是素数,且只要你脸不黑以及常数不要巨大一般来讲都比\(O(\sqrt n)\)的朴素做法更快. 定理: Miller ...

  7. 转I/O多路复用之select

    源地址:http://my.oschina.net/pathenon/blog/64090 select的功能可以用一句话来描述: 实现基于I/O多路复用的异步并发编程. 在具体讲解select之前我 ...

  8. MyBatis配置文件(七)--environments运行环境

    一.environments配置信息: environments的作用是用来配置数据库信息,可以配置多个,其有两个可配的子元素,分别是:事务管理器transactionManager和数据源dataS ...

  9. Web充斥着存在漏洞的过期JavaScript库

    虽然使用第三方软件库通常会降低开发的时间,但同时也会增加网站暴露出的攻击表面,对此我们应有充分的认识.因此需要保持第三方软件库的最新版本依赖,以便从安全更新中获益.即便如此,一份近期研究表明,在Ale ...

  10. pixhawk 常见问题 持续更新

    红灯蓝灯闪,初始化中,请稍等 黄灯双闪,错误,系统拒绝解锁 黄灯闪,遥控器关闭 黄灯快速闪且滴滴响,电池保护激活 蓝灯... 未见过.... 绿灯闪: 已加锁,GPS锁定已获得. 准备解锁. 从加锁状 ...