PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval
from: Dacheng Tao 悉尼大学
PROBLEM:
time series retrieval: given the current multivariate time series segment, how to obtain its relevant time series segments in the historical data.
Two challenging:
1. it requires a compact representation of the raw time series, which can explicitly encode the temporal dynamics as well as the correlations (interactions) between different pairs of time series.
2. 查询相似结果的快速性和准确性。
Compact representation: temporal dynamics + correlations
INTRODUCTION:
问题定义: given the current multivariate time series segment, i.e., a slice of multivariate time series which lasts for a short period of time, we aim to find its most similar time series segments in the historical data (or database).
A supervised multivariate time series retrieval problem. label information is available in historical data.
other methods: discrete Fourier transform; discrete wavelet transform; piecewise aggregate approximation; 但是这些方法仅仅针对univariate time series representation and ignore the correlations between different pairs.
?? 不同序列间的相关性也要compact?? 由于是一个窗口内的multivariate time series, 需要衡量他们之间的correlation.
time serie作为一个独立的个体,如果想研究他们之间的correlations:
1. time series ----> compact representation -----> correlations
2. time series ----> correlation -----> compact representation
To speed up the expensive similarity search。
purpose: multivariate time series retrieval.
input: a raw multivariate time series segment
steps:
- employ lstm units to encode the temporal dynamics
- use cnn to encode the correlations between different pairs of ts
- generated two separate feature vectors from the first two steps.
- two separate feature vectors ----> a joint binary embedding
- calculate the similarity between two multivariate ts segments in Hamming space.
- r-th root ranking loss to train the disciplined embedding functions.
DEEP r-TH ROOT OF RANK SUPERVISED JOINT BINARY EMBEDDING
1. multivariate time series ----> lstm -----> the last hidden state ht
2. multivariate time series ---> correlation matrix -----> cnn ------> fully connected layer, l
3. joint binary embedding: y = [ht, l]; hash function/ embedding ----> Hv
4. 相比于pairwise similarities,我们使用了segment similarities in the form of triplets. {(Xq,Xi,Xj)}
yq: a query segment, yi: similar segment; yj: dissimilar segment;
就我目前看来,只是根据r-th ranking loss进行了训练,输入是{(Xq,Xi,Xj)}。但是最终如何检索的,还是不知道。
EXPERIMENTS
To measure the effectiveness of various binary embedding techniques for multivariate time series retrieval, we consider three evaluation metrics, i.e., Mean Average Precision (MAP), precision at top-k positions (Precision@k), and recall at top-k positions (Recall@k).
结果看起来很不错。
SUPPLEMENTARY KNOWLEDGE:
1. hamming distance: 是两个字符串对应位置的不同字符的个数。
例如:
- 10101与10101之间的汉明距离是2。
- 2396与2396之间的汉明距离是3。
- "toned"与"roses"之间的汉明距离是3。
2. triplet loss
Triplet loss is a loss function for artificial neural networks where a baseline (anchor) input is compared to a positive (truthy) input and a negative (falsy) input. The distance from the baseline (anchor) input to the positive (truthy) input is minimized, and the distance from the baseline (anchor) input to the negative (falsy) input is maximized.[1][2]
PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval的更多相关文章
- PP: Deep clustering based on a mixture of autoencoders
Problem: clustering A clustering network transforms the data into another space and then selects one ...
- PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network
PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...
- 基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG)
基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedd ...
- PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...
- HDU 3966(树链剖分+点修改+点查询)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3966 题目大意:营地的分布成树型.每个营地都有一些人,每次修改修改一条链上的所有营地的人数,每次查询单 ...
- 108. Convert Sorted Array to Binary Search Tree (building tree with resursion)
Given an array where elements are sorted in ascending order, convert it to a height balanced BST. Fo ...
- 论文翻译:2020_DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement
论文地址:DCCRN:用于相位感知语音增强的深度复杂卷积循环网络 论文代码:https://paperswithcode.com/paper/dccrn-deep-complex-convolutio ...
- Awesome Deep Vision
Awesome Deep Vision A curated list of deep learning resources for computer vision, inspired by awes ...
- 【HDOJ】5096 ACM Rank
Treap+set仿函数重定义.每当ac一道题目时,相当于对总时间减去一个大数. /* 5096 */ #include <iostream> #include <string> ...
随机推荐
- 二进制、十六进制理解及int类型二进制存储方式
二进制 0000 0000 0000 0000 0000 0000 0000 0001 // 2^0 0000 0000 0000 0000 0000 0000 0000 0010 // 2^1 00 ...
- js是什么?js可以做什么?js的构成与学习方向
js(百度官方介绍javascript)编程的基本语言学习目标是:a.怎么写和运行js脚本b.理解变量和值c.学会简单的数学运算符d.数据类型是什么e.流程控制 对于JavaScript的背景知识和结 ...
- Android中Chronometer计时器的简单使用
场景 实现效果如下 注: 博客: https://blog.csdn.net/badao_liumang_qizhi 关注公众号 霸道的程序猿 获取编程相关电子书.教程推送与免费下载. 实现 将布局改 ...
- Linux学习Day5:Vim编辑器、配置网卡、配置Yum软件仓库
今天首先学习Vim编辑器的使用,通过它可以对Linux系统的文件进行编写和修改.在Linux系统中一切都是文件,所以熟练掌握Vim编辑器的使用十分重要.最后通过配置主机网卡的实验,来加深Vim编辑器中 ...
- P1613 跑路【倍增】【最短路】
题目描述 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟 ...
- 安装Linux系统时LSI RAID卡的驱动挂载
转载原文地址:https://www.jianshu.com/p/64415712401e 当使用较新的SAS卡来安装Linux系统时,经常会遇到在系统安装界面读不到RAID的情况,这时就需要考虑Li ...
- XSS跨站测试代码
'><script>alert(document.cookie)</script>='><script>alert(document.cookie)&l ...
- java基础--------arraylist(动态数组)和linkedlist(双向链表)的区别
arraylist使用数组存储数据,所以这样存储的数据根据索引查询的数据速度快,但是新增或者删除元素时需要设计到位移操作,所以比较慢. linkedlist使用双向链表方式存储数据,每个元素都记录前后 ...
- java使用原生MySQL实现数据的增删改查以及数据库连接池技术
一.工具类及配置文件准备工作 1.1 引入jar包 使用原生MySQL,只需要用到MySQL连接的jar包,maven引用方式如下: <dependency> <groupId> ...
- CSS:overflow 内容溢出属性
overflow 属性规定当内容溢出元素框时发生的事情 值 描述 visible 默认值.内容不会被修剪,会呈现在元素框之外. hidden 内容会被修剪,并且其余内容是不可见的. scroll 内容 ...