from: Dacheng Tao 悉尼大学

PROBLEM:

time series retrieval: given the current multivariate time series segment, how to obtain its relevant time series segments in the historical data.

Two challenging:

1. it requires a compact representation of the raw time series, which can explicitly encode the temporal dynamics as well as the correlations (interactions) between different pairs of time series.

2. 查询相似结果的快速性和准确性。

Compact representation: temporal dynamics + correlations

INTRODUCTION:

问题定义: given the current multivariate time series segment, i.e., a slice of multivariate time series which lasts for a short period of time, we aim to find its most similar time series segments in the historical data (or database).

A supervised multivariate time series retrieval problem. label information is available in historical data.

other methods: discrete Fourier transform; discrete wavelet transform; piecewise aggregate approximation; 但是这些方法仅仅针对univariate time series representation and ignore the correlations between different pairs.

?? 不同序列间的相关性也要compact?? 由于是一个窗口内的multivariate time series, 需要衡量他们之间的correlation.

time serie作为一个独立的个体,如果想研究他们之间的correlations:

1. time series ----> compact representation -----> correlations

2. time series ----> correlation -----> compact representation

To speed up the expensive similarity search。

purpose: multivariate time series retrieval.

input: a raw multivariate time series segment

steps:

  1. employ lstm units to encode the temporal dynamics
  2. use cnn to encode the correlations between different pairs of ts
  3. generated two separate feature vectors from the first two steps.
  4. two separate feature vectors ----> a joint binary embedding
  5. calculate the similarity between two multivariate ts segments in Hamming space.
  6. r-th root ranking loss to train the disciplined embedding functions.

DEEP r-TH ROOT OF RANK SUPERVISED JOINT BINARY EMBEDDING

1. multivariate time series ----> lstm -----> the last hidden state ht

2. multivariate time series ---> correlation matrix -----> cnn ------> fully connected layer, l

3. joint binary embedding: y = [ht, l]; hash function/ embedding ----> Hv

4. 相比于pairwise similarities,我们使用了segment similarities in the form of triplets. {(Xq,Xi,Xj)}

yq: a query segment, yi: similar segment; yj: dissimilar segment;

就我目前看来,只是根据r-th ranking loss进行了训练,输入是{(Xq,Xi,Xj)}。但是最终如何检索的,还是不知道。

EXPERIMENTS

To measure the effectiveness of various binary embedding techniques for multivariate time series retrieval, we consider three evaluation metrics, i.e., Mean Average Precision (MAP), precision at top-k positions (Precision@k), and recall at top-k positions (Recall@k).

结果看起来很不错。

SUPPLEMENTARY KNOWLEDGE:

1. hamming distance: 是两个字符串对应位置的不同字符的个数。

例如:

  • 1010110101之间的汉明距离是2。
  • 23962396之间的汉明距离是3。
  • "toned"与"roses"之间的汉明距离是3。

2. triplet loss

Triplet loss is a loss function for artificial neural networks where a baseline (anchor) input is compared to a positive (truthy) input and a negative (falsy) input. The distance from the baseline (anchor) input to the positive (truthy) input is minimized, and the distance from the baseline (anchor) input to the negative (falsy) input is maximized.[1][2]

PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval的更多相关文章

  1. PP: Deep clustering based on a mixture of autoencoders

    Problem: clustering A clustering network transforms the data into another space and then selects one ...

  2. PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network

    PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...

  3. 基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG)

    基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedd ...

  4. PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

    From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...

  5. HDU 3966(树链剖分+点修改+点查询)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3966 题目大意:营地的分布成树型.每个营地都有一些人,每次修改修改一条链上的所有营地的人数,每次查询单 ...

  6. 108. Convert Sorted Array to Binary Search Tree (building tree with resursion)

    Given an array where elements are sorted in ascending order, convert it to a height balanced BST. Fo ...

  7. 论文翻译:2020_DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement

    论文地址:DCCRN:用于相位感知语音增强的深度复杂卷积循环网络 论文代码:https://paperswithcode.com/paper/dccrn-deep-complex-convolutio ...

  8. Awesome Deep Vision

    Awesome Deep Vision  A curated list of deep learning resources for computer vision, inspired by awes ...

  9. 【HDOJ】5096 ACM Rank

    Treap+set仿函数重定义.每当ac一道题目时,相当于对总时间减去一个大数. /* 5096 */ #include <iostream> #include <string> ...

随机推荐

  1. python学习------文件的读与写

    f=open("yesterday","r",encoding="utf-8") #文件句柄 data=f.read() data2=f.r ...

  2. jQuery 源码解析(三十一) 动画模块 便捷动画详解

    jquery在$.animate()这个接口上又封装了几个API,用于进行匹配元素的便捷动画,如下: $(selector).show(speed,easing,callback)        ;如 ...

  3. 反射机制(reflection)

    一.反射: 1.反射指可以在运行时加载.探知.使用编译期间完全未知的类. 2.程序在运行状态中,可以动态加载一个只有名称的类,对于任意一个已加载的类,都能够知道这个类的所有属性和方法: 对于任意一个对 ...

  4. C# WPF 一个设计界面

    微信公众号:Dotnet9,网站:Dotnet9,问题或建议:请网站留言, 如果对您有所帮助:欢迎赞赏. C# WPF 一个设计界面 今天正月初三,大家在家呆着挺好,不要忘了自我充电. 武汉人民加油, ...

  5. 在Idea中jdk11和jdk8环境变量的切换

    先配置好jdk11和jdk8环境变量 idea(2019.3)中jdk版本切换(jdk8和jdk11) 快捷键ctrl + shift + alt +s ,将jdk11修改为jdk1.8 完成后,显示 ...

  6. 洛谷题解 P1292 【倒酒】

    原题传送门 题目描述 Winy是一家酒吧的老板,他的酒吧提供两种体积的啤酒,a ml和b ml,分别使用容积为a ml和b ml的酒杯来装载. 酒吧的生意并不好.Winy发现酒鬼们都非常穷.有时,他们 ...

  7. 查看mysql是否锁表了

    1.查看表是否被锁: (1)直接在mysql命令行执行:show engine innodb status\G. (2)查看造成死锁的sql语句,分析索引情况,然后优化sql. (3)然后show p ...

  8. jQuery---$冲突的解决方案

    $冲突的解决方案 遇到其他js文件也用$包装了函数.可以把jQuery放在后面,并释放下$的控制权,也可以换个字符替代原来的$,例如$$ 或者,jQuery //jQuery释放$的控制权 $$ = ...

  9. idea中创建maven的Javaweb工程并进行配置

    学完maven后,可以创建maven的javaweb工程,在创建完成后还需要一些配置,下面来说下具体步骤,在这里我创建的是一个模块,创建web项目的方式和创建模块一样 1.创建一个模块,点new-Mo ...

  10. 大数据才是未来,Oracle、SQL Server成昨日黄花?

    1. 引子**** 有人在某个专注SQL的公众号留言如下: 这个留言触碰到一个非常敏感的问题:搞关系型数据库还有前途吗?现在都2020年了,区块链正火热,AI人才已经"过剩",大数 ...