数论+线性dp——cf1174A
直接推公式没有推出来
看了题解才会做。。
首先能够确定前面几个数的gcd一定是2^j * 3^k, 其中k<=1
那么可以用dp[i][j][k]来表示到第i位的gcd是2^j*3^k
f(j,k) 为 n / 2^j / 3^k
那么状态转移有
dp[i+1][j][k]=dp[i][j][k]*( f(j,k)-i ); //继承前一状态
dp[i+1][j-1][k]=dp[i][j][k]*( f(j-1,k)-f(j,k) );
dp[i+1][j][k-1]=dp[i][j][k]*( f(j,k-1)-f(j,k) );
#include <iostream>
using namespace std;
#define mod 1000000007
int n,dp[][][];
int f(int x,int y)
{
int tmp=(<<x);
if (y)
tmp*=;
return n/tmp;
}
int main()
{
scanf("%d",&n);
int p=;
while ((<<p)<=n)
p++;
p--;
dp[][p][]=;
if ((<<(p-))*<=n)
dp[][p-][]=; for (int i=;i<n;i++)
{
for (int x=;x<=p;x++)
{
for (int y=;y<=;y++)
{
dp[i+][x][y]=(dp[i+][x][y]+1LL*dp[i][x][y]*(f(x,y)-i))%mod;
if (x)
dp[i+][x-][y]=(dp[i+][x-][y]+1LL*dp[i][x][y]*(f(x-,y)-f(x,y)))%mod;
if (y)
dp[i+][x][y-]=(dp[i+][x][y-]+1LL*dp[i][x][y]*(f(x,y-)-f(x,y)))%mod;
}
}
}
printf("%d",dp[n][][]);
}
数论+线性dp——cf1174A的更多相关文章
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
- Codeforces 176B (线性DP+字符串)
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成 ...
- hdu1712 线性dp
//Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门 ...
- 动态规划——线性dp
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...
- POJ 2479-Maximum sum(线性dp)
Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 33918 Accepted: 10504 Des ...
- poj 1050 To the Max(线性dp)
题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而 ...
- nyoj44 子串和 线性DP
线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> ...
- 『最大M子段和 线性DP』
最大M子段和(51nod 1052) Description N个整数组成的序列a[1],a[2],a[3],-,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的.如果M &g ...
- 『最长等差数列 线性DP』
最长等差数列(51nod 1055) Description N个不同的正整数,找出由这些数组成的最长的等差数列. 例如:1 3 5 6 8 9 10 12 13 14 等差子数列包括(仅包括两项的不 ...
随机推荐
- css3 鼠标悬停图片动画
<div class="grid"> <figure class="effect-milo"> <img src="im ...
- 网络编程之 TCP-UDP的详细介绍
一.TCP协议 1. TCP协议的特点 1.TCP是面向连接的运输层协议.这就意味着,在使用该协议之前,必须建立TCP连接.在传输数据完毕后,必须释放已经建立的TCP连接. 2.每一条TCP连接只能有 ...
- Python学习笔记(八)——正则表达式
正则表达式 \d表示匹配一个数字 例如,1\d\d可以匹配以1开头的三位数字 \w可以匹配一个字母或者数字 例如,\d\w可以匹配12,1A等 .可以匹配任意字符 例如,py.表示pyc.pya等 * ...
- Echart中X轴为时间坐标刻度时,后台返回时间List被强制转化为时间戳问题
if(recordlist!=null&&recordlist.size()>0) { for (Record record : recordlist) { //根据频次决定使用 ...
- jQuery实现全选与全部选
为了便于用户理解,直接粘贴下面的代码即可 <!DOCTYPE html> <html lang="en"> <head> <meta ch ...
- leetcode-两个数组的交集
C++解题方法: class Solution { public: vector<int> intersection(vector<int>& nums1, vecto ...
- Executor ExecutorService Executors
Executor public interface Executor { void execute(Runnable command); } ExecutorService ExecutorServi ...
- Delphi 日期函数(Day、Mon、Year、Week)使用方法描述
Day 开头的函数 ● function DateOf(const Avalue: TDateTime): TDateTime; 描述 使用 DateOf 函数用来把一个 TDateTime 类型的变 ...
- Java——对象
1.2对象 1.2.1 对象的创建和使用 ①使用new + 构造器创建一个新的对象: ②使用“对象名.对象成员”的方式访问对象成员(包括属性和方法). public class Animal { pu ...
- spark出现BINLOG_FORMAT = STATEMENT
错误解决: Caused by: java.sql.SQLException: Cannot execute statement: impossible to write to binary log ...