Beijing Guards

Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the Imperial City Wall, the Inner City Wall, and finally the Outer City Wall. Most of these walls were demolished in the 50s and 60s to make way for roads. The walls were protected by guard towers, and there was a guard living in each tower. The wall can be considered to be a large ring, where every guard tower has exaetly two neighbors. The guard had to keep an eye on his section of the wall all day, so he had to stay in the tower. This is a very boring job, thus it is important to keep the guards motivated. The best way to motivate a guard is to give him lots of awards. There are several different types of awards that can be given: the Distinguished Service Award, the Nicest Uniform Award, the Master Guard Award, the Superior Eyesight Award, etc. The Central Department of City Guards determined how many awards have to be given to each of the guards. An award can be given to more than one guard. However, you have to pay attention to one thing: you should not give the same award to two neighbors, since a guard cannot be proud of his award if his neighbor already has this award. The task is to write a program that determines how many different types of awards are required to keep all the guards motivated. Input The input contains several blocks of test eases. Each case begins with a line containing a single integer l ≤ n ≤ 100000, the number of guard towers. The next n lines correspond to the n guards: each line contains an integer, the number of awards the guard requires. Each guard requires at least 1, and at most l00000 awards. Guard i and i + 1 are neighbors, they cannot receive the same award. The first guard and the last guard are also neighbors. The input is terminated by a block with n = 0. Output For each test case, you have to output a line containing a single integer, the minimum number x of award types that allows us to motivate the guards. That is, if we have x types of awards, then we can give as many awards to each guard as he requires, and we can do it in such a way that the same type of award is not given to neighboring guards. A guard can receive only one award from each type. Sample Input 3 4 2 2 5 2 2 2 2 2 5 1 1 1 1 1 0 Sample Output 8 5 3

贪心的奇数编号优先选最左边,偶数编号优先选最右边可以吗?

n为偶数时可行,但n为奇数不可以(如:n = 5时,r = 2 2 2 2 2)

二分最终答案x不妨令第一个取1,2....r[1] - 1,r[1]

x被分为前r[1]个和后x - r[1]个,简称为前面和后面

设left[i]表示第i个人在前面取了left[i]个

righe[i]表示第i个人在后面取了right[i]个

当且仅当存在一种取法使得left[n] = 0时可行

我们只需要知道多少个,至于怎么取的我们不关心

不难发现,要使left[n]尽可能小,需要让right[n - 1]尽可能大,left[n - 2]尽可能小。。。

即:i为奇数时,令left[i]尽可能小;i为偶数时,令right[i]尽可能小

不难发现,当x >= max(r[i], r[i] + 1)时,满足如下转移方程

i为奇数:left[i] = min(r[1] - left[i - 1] ,r[i]), right[i] = r[i] - left[i]

i为偶数:right[i] = min(x - r[1] - right[i - 1], r[i]), left[i] = r[i] - right[i]

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <vector>
#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))
#define abs(a) ((a) < 0 ? (-1 * (a)) : (a))
inline void swap(int &a, int &b)
{
int tmp = a;a = b;b = tmp;
}
inline void read(int &x)
{
x = ;char ch = getchar(), c = ch;
while(ch < '' || ch > '') c = ch, ch = getchar();
while(ch <= '' && ch >= '') x = x * + ch - '', ch = getchar();
if(c == '-') x = -x;
} const int INF = 0x3f3f3f3f;
const int MAXN = + ; int r[MAXN], n, ans = , left[MAXN], right[MAXN]; bool solve(int x)
{
left[] = r[];right[] = ;
for(register int i = ;i <= n;++ i)
{
if(i & )
{
right[i] = min(x - r[] - right[i - ], r[i]);
left[i] = r[i] - right[i];
}
else
{
left[i] = min(r[] - left[i - ], r[i]);
right[i] = r[i] - left[i];
}
}
return left[n] == ;
} int main()
{
while(scanf("%d", &n) != EOF && n)
{
for(register int i = ;i <= n;++ i) read(r[i]);
if(n == )
{
printf("%d\n", r[]);
continue;
}
ans = r[] + r[n];
for(register int i = ;i <= n;++ i) ans = max(ans, r[i] + r[i - ]);
if(n & )
{
int l = ans, r = ans, mid;
for(register int i = ;i <= n;++ i) r = max(r, ::r[i] * );
while(l <= r)
{
mid = (l + r) >> ;
if(solve(mid)) r = mid - , ans = mid;
else l = mid + ;
}
}
printf("%d\n", ans);
}
return ;
}

LA3177

LA3177 Beijing Guards的更多相关文章

  1. LA 3177 Beijing Guards(二分法 贪心)

    Beijing Guards Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the ...

  2. uva 1335 - Beijing Guards(二分)

    题目链接:uva 1335 - Beijing Guards 题目大意:有n个人为成一个圈,其中第i个人想要r[i]种不同的礼物,相邻的两个人可以聊天,炫耀自己的礼物.如果两个相邻的人拥有同一种礼物, ...

  3. UVALive 3177 Beijing Guards

    题目大意:给定一个环,每个人要得到Needi种物品,相邻的人之间不能得到相同的,问至少需要几种. 首先把n=1特判掉. 然后在n为偶数的时候,答案就是max(Needi+Needi+1)(包括(1,n ...

  4. 题解 UVA1335 【Beijing Guards】

    UVA1335 Beijing Guards 双倍经验:P4409 [ZJOI2006]皇帝的烦恼 如果只是一条链,第一个护卫不与最后一个护卫相邻,那么直接贪心,找出最大的相邻数的和. 当变成环,贪心 ...

  5. 【二分答案+贪心】UVa 1335 - Beijing Guards

    Beijing was once surrounded by four rings of city walls: the Forbidden City Wall, the Imperial City ...

  6. uva 1335 - Beijing Guards

    竟然用二分,真是想不到: 偶数的情况很容易想到:不过奇数的就难了: 奇数的情况下,一个从后向前拿,一个从前向后拿的分配方法实在太妙了! 注: 白书上的代码有一点点错误 代码: #include< ...

  7. Uva LA 3177 - Beijing Guards 贪心,特例分析,判断器+二分,记录区间内状态数目来染色 难度: 3

    题目 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...

  8. UVA 1335 Beijing Guards(二分答案)

    入口: https://cn.vjudge.net/problem/UVA-1335 [题意] 有n个人为成一个圈,其中第i个人想要r[i]种不同的礼物,相邻的两个人可以聊天,炫耀自己的礼物.如果两个 ...

  9. Uva 长城守卫——1335 - Beijing Guards

    二分查找+一定的技巧 #include<iostream> using namespace std; +; int n,r[maxn],Left[maxn],Right[maxn];//因 ...

随机推荐

  1. view架构

    一 Django的视图函数view 一个视图函数(类),简称视图,是一个简单的Python 函数(类),它接受Web请求并且返回Web响应. 响应可以是一张网页的HTML内容,一个重定向,一个404错 ...

  2. USACO 2012 March Silver Tractor /// 优先队列BFS oj21567

    题目大意: 输入n,(x,y):n为阻挡的草堆数量,(x,y)为开始时拖拉机所在的位置 接下来n行每行一个坐标(a,b):为各个草堆的坐标 输出拖拉机要回到原点(0,0)需要移动的草堆数量 Sampl ...

  3. Xcode9.4.1官方下载链接地址

    More Downloads for Apple Developershttps://developer.apple.com/download/more/ Xcode 9.4.1https://dow ...

  4. Easy Excel导出

    @GetMapping(value = "/down2") public void down2(HttpServletResponse response) throws Excep ...

  5. android 使用现成做get请求

    //接受子线程发来的消息 Handler hanler = new Handler() { @Override public void handleMessage(Message msg) { // ...

  6. 杜教筛&套路总结

    杜教筛 \[ \begin{split} (g*f)(i)&=\sum_{d|i}g(d)f(\frac id)\\ \Rightarrow g(1)S(n)&=\sum_{i=1}^ ...

  7. 亲历者说:Kubernetes API 与 Operator,不为人知的开发者战争

    如果我问你,如何把一个 etcd 集群部署在 Google Cloud 或者阿里云上,你一定会不假思索的给出答案:当然是用 etcd Operator! 实际上,几乎在一夜之间,Kubernetes ...

  8. 字符串+dp——cf1163D好题

    很好的题(又复习了一波kmp) /* dp[i,j,k]:到s1的第i位,匹配s2到j,s3到k的最优解 */ #include<bits/stdc++.h> using namespac ...

  9. 简单科普下hosts文件原理与制作

    简单科普下hosts文件原理与制作 hosts文件是一个用于储存计算机网络中各节点信息的计算机文件.这个文件负责将主机名映射到相应的IP地址.hosts文件通常用于补充或取代网络中DNS的功能.和DN ...

  10. Android之相关术语

    Dalvik: Android特有的虚拟机,和JVM不同,Dalvik虚拟机非常适合在移动终端上使用! AVD: (android virtual machine):安卓虚拟设备,就是安卓的模拟器 A ...