description


analysis

  • 矩阵乘法好题

  • 最朴素的\(10pts\)的\(f[i][j]\)容易\(DP\),但是是\(O(nm^2)\)的复杂度

  • 于是把\(10\)分的\(DP\)写出来,就可以知道\(f[i][j]+=f[k][l]\)的部分可以搞前缀和优化,\(O(nm)\)有\(50pts\)

  • 这个要先弄懂才可以继续搞矩乘

  • 可以分成奇数列和偶数列分别\(DP\),设\(f[i],g[i]\)分别表示某奇数列的第\(i\)和偶数列的第\(i\)的方案数的前缀和

  • \(f[i]\)和\(g[i]\)都要加上第\(i\)行前面与他奇偶性相同的方案数方便转移,具体见代码

  • 于是\(f[i]=g[i-1]+g[i]+g[i+1],g[i]=f[i-1]+f[i]+f[i+1]\)(注意边界的两个点),可以矩乘优化了

  • 具体就是,初始矩阵写成前一半是\(f[1..n]\),后一半是\(g[1..n]\)

  • 想办法矩乘转移到\((g[1..n],f’[1..n])\),这里举\(n=3\)的例子

  • \((1,0,0,1,1,0)*F=(1,1,0,3,2,1)\),因为打表发现\(\left(
    \begin{matrix}
    1,1,2...\\
    0,1,2... \\
    0,0,1...
    \end{matrix}
    \right)\),这个\(3\)加上了前面的那个\(1\)

  • 于是由\((f[i-1],f[i],f[i+1],g[i-1],g[i],g[i+1])*F=(g[i-1],g[i],g[i+1],f’[i-1],f’[i],f’[i+1])\)推矩阵

  • 注意\(f[i]=g[i-1]+g[i]+g[i+1]\),推出来大概就是\(\left(
    \begin{matrix}
    0,0,0,1,0,0\\
    0,0,0,0,1,0 \\
    0,0,0,0,0,1\\
    1,0,0,1,1,0\\
    0,1,0,1,1,1\\
    0,0,1,0,1,1\\
    \end{matrix}
    \right)\)

  • \(n=10\)的矩阵长这样

  • 于是就可以直接上矩乘搞了,答案就为最后两位的和

code

#include<stdio.h>
#include<string.h>
#include<algorithm>
#define MAXN 55
#define mod 30011
#define ll long long
#define fo(i,a,b) for (ll i=a;i<=b;++i)
#define fd(i,a,b) for (ll ia=;i>=b;--i) using namespace std; ll n,m; struct matrix
{
ll a[MAXN<<1][MAXN<<1],n,m;
matrix(){memset(a,0,sizeof(a)),n=m=0;}
matrix(ll x,ll y){memset(a,0,sizeof(a)),n=x,m=y;}
}f,ans,ans1,f1;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while (ch<'0' || '9'<ch){if (ch=='-')f=-1;ch=getchar();}
while ('0'<=ch && ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
inline matrix operator*(matrix a,matrix b)
{
matrix c(a.n,b.m);
fo(i,1,a.n)
fo(j,1,b.m)
fo(k,1,a.m)(c.a[i][j]+=a.a[i][k]*b.a[k][j])%=mod;
return c;
}
inline matrix pow(matrix x,ll y)
{
matrix z=x;
while (y)
{
if (y&1)z=z*x;
y>>=1,x=x*x;
}
return z;
}
int main()
{
n=read(),m=read();
ans=ans1=matrix(1,n<<1),f=f1=matrix(n<<1,n<<1);
ans.a[1][1]=ans.a[1][n+1]=ans.a[1][n+2]=f.a[n+1][n+1]=1;
fo(i,n+2,n<<1)f.a[i][i]=f.a[i-1][i]=f.a[i][i-1]=1;
fo(i,1,n)f.a[i][n+i]=f.a[n+i][i]=1;
f1=pow(f,m-3),ans1=ans*f1;
printf("%lld\n",(ans1.a[1][n-1]+ans1.a[1][n])%mod);
return 0;
}

【JZOJ3294】【BZOJ4417】【luoguP3990】超级跳马的更多相关文章

  1. BZOJ4417: [Shoi2013]超级跳马

    Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...

  2. [BZOJ 4417][Shoi2013]超级跳马

    4417: [Shoi2013]超级跳马 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 379  Solved: 230[Submit][Status ...

  3. 洛谷 P3990 [SHOI2013]超级跳马 解题报告

    P3990 [SHOI2013]超级跳马 题目描述 现有一个\(n\) 行 \(m\) 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘. ...

  4. [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化

    这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...

  5. 【BZOJ4417】: [Shoi2013]超级跳马

    题目链接: 传送. 题解: 矩阵快速幂优化DP. 先考虑$nm^2$DP,设$f_{(i,j)}$表示从$1,1$到$i,j$的方案,显然这个方程和奇偶性有关,我们考虑某列的$i$同奇偶性的转移和奇偶 ...

  6. 【bzoj4417】[Shoi2013]超级跳马 矩阵乘法

    题目描述 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可行的跳法.   ...

  7. [bzoj4417] [洛谷P3990] [Shoi2013] 超级跳马

    Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...

  8. Luogu P3990 [SHOI2013]超级跳马

    这道题还是一道比较不可做的矩阵题 首先我们先YY一个递推的算法:令f[i][j]表示走到第i行第j列时的方案数,那么有以下转移: f[i][j]=f[i-1][j-2*k+1]+f[i+1][j-2* ...

  9. P3990 [SHOI2013]超级跳马

    传送门 首先不难设\(f[i][j]\)表示跳到\((i,j)\)的方案数,那么不难得到如下转移 \[f[i][j]=\sum\limits_{k=1}^{\frac n2}f[i-2k+1][j-1 ...

随机推荐

  1. aarch64 架构 交叉编译 tcpdump

    1. 下载 tcpdump 源码 地址 :http://www.tcpdump.org/    (4.9.2) tcpdump 依赖 libpcap  源码 地址 : http://www.tcpdu ...

  2. vCenter 6.0 vsca 安装遇到的一些小问题

    在安装vCenter 6.0 vsca的时候,安装插件到第二个的时候,会报出一个windows installer的错误.需要联系软件管理员或者技术支持的一个error. 经过多次的测试,我终于找到了 ...

  3. 【sql】牛客网练习题 (共 61 题)

    [1]查找最晚入职员工的所有信息 CREATE TABLE `employees` ( `emp_no` ) NOT NULL, `birth_date` date NOT NULL, `first_ ...

  4. js关闭当前窗口的几种方法

    第一种:不带任何提示关闭窗口的js代码 <a href="javascript:window.opener=null;window.open('','_self');window.cl ...

  5. Restrictions----用法

    ----------------------------------------方法说明 --------------------------QBC常用限定方法-------------------- ...

  6. (一)CGI (通用网关接口) 简介

    CGI (通用网关接口)公共网关接口(Common Gateway Interface,CGI)是Web 服务器运行时外部程序的规范,按CGI 编写的程序可以扩展服务器功能.CGI 应用程序能与浏览器 ...

  7. SQL 删除

    SQL Delete 语句(删除表中的记录) DELETE语句用于删除表中现有记录. SQL DELETE 语句 DELETE 语句用于删除表中的行. SQL DELETE 语法 DELETE FRO ...

  8. python语法学习

    global关键字(内部作用域想要对外部作用域的变量进行修改) decator装饰器,说白了就是一个函数指针的传递 *arg,**kwarg, 分别为tuple,dic传递

  9. list 链表

    #include <list> #include <iostream> using std::list; /* 双向环状链表 //每一个结点 一个数据域 一个前驱指针 一个后驱 ...

  10. NOIp2018集训test-10-23

    上午考了一套sb题,但是没有人AK.李巨290虐场. 下午又考了一套sb题,李巨AK虐场.%%% T1 % 中国剩余定理好像做不了啊,我一直在想如何用CRT做,然后就GG了. 然而正解是bike当初说 ...