数位dp——牛客多校H
/*
x[1,A]
y[1,B]
x^y<C 或 x&y>C
把ABC拆成二进制后按位进行数位dp
dp[pos][s1][s2][f1][f2]
表示从高到低第pos位,条件一状态为s1,条件2状态为s2,x在pos为的限制状态为f1,y在pos的限制状态为f2的方案数
条件状态s=0|1|2表示前pos位数运算结果<C前pos位数,=C前pos位数,>C前pos位数
dp时枚举下一位的所有可能情况,如果当前状态已经确定(满足或不满足),那么下一位取什么都可以,即下一位的条件状态可以直接继承当前位
反之当前状态不确定,即前pos位的值和C相等,那么需要通过当前为来进行判断下一位的条件状态 终止条件:pos==30
s1==2||s2==0,值为1,反之为0 考虑要减去的情况
x=0,y=[1,min(C-1,B)]都可行
y=0,x=[1,min(C-1,A)]都可行
x=0,y=0也可行
*/
#include<bits/stdc++.h>
using namespace std;
#define maxn 35
#define ll long long
ll A,B,C,dp[maxn][][][][];
vector<int>v1,v2,v3; ll dfs(int pos,int S1,int S2,int f1,int f2){
ll &res=dp[pos][S1][S2][f1][f2];
if(res!=-)return res;
if(pos==){//边界条件
if(S1==||S2==)return res=;
else return res=;
}
res=;
int newS1,newS2,lim1,lim2;
lim1=f1?v1[pos]:;//x下一位的上界
lim2=f2?v2[pos]:;//y下一位的上界
for(int i=;i<=lim1;i++)//枚举xy的下一位
for(int j=;j<=lim2;j++){
int tmp1=i&j,tmp2=i^j;
if(S1==){//先处理条件1
if(tmp1==v3[pos])newS1=;
else if(tmp1<v3[pos])newS1=;
else newS1=;
}
else newS1=S1;
if(S2==){
if(tmp2==v3[pos])newS2=;
else if(tmp2<v3[pos])newS2=;
else newS2=;
}
else newS2=S2;
res=res+dfs(pos+,newS1,newS2,f1&&(i==lim1),f2&&(j==lim2));
}
return res;
}
void calc(ll x,vector<int> & v){
v.clear();
for(int i=;i>;i--){
v.push_back(x&);
x>>=;
}
reverse(v.begin(),v.end());//把数组倒置后就可以正常数位dp了
}
int main(){
int t;cin>>t;
while(t--){
memset(dp,-,sizeof dp);
cin>>A>>B>>C;
calc(A,v1);calc(B,v2);calc(C,v3);
ll res=dfs(,,,,);//进入搜索时的状态
res-=min(C-,A)+min(C-,B)+;//0取不到,但数位dp时算了
cout<<res<<'\n';
}
}
数位dp——牛客多校H的更多相关文章
- 字符串dp——牛客多校第五场G
比赛的时候脑瘫了没想出来..打多校以来最自闭的一场 显然从s中选择大于m个数组成的数必然比t大,所以只要dp求出从s中选择m个数大于t的方案数 官方题解是反着往前推,想了下反着推的确简单,因为高位的数 ...
- 线段树优化dp——牛客多校第一场I(好题)
和两天做了两道数据结构优化dp的题,套路还是差不多的 题解链接! https://www.cnblogs.com/kls123/p/11221471.html 一些补充 其实这道题的dp[i]维护的不 ...
- 2019牛客多校第八场 F题 Flowers 计算几何+线段树
2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...
- 2019牛客多校 Round4
Solved:3 Rank:331 B xor 题意:5e4个集合 每个集合最多32个数 5e4个询问 询问l到r个集合是不是都有一个子集的xor和等于x 题解:在牛客多校第一场学了线性基 然后这个题 ...
- 2019牛客多校第一场 I Points Division(动态规划+线段树)
2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...
- 牛客多校第3场 J 思维+树状数组+二分
牛客多校第3场 J 思维+树状数组+二分 传送门:https://ac.nowcoder.com/acm/contest/883/J 题意: 给你q个询问,和一个队列容量f 询问有两种操作: 0.访问 ...
- 2019年牛客多校第一场B题Integration 数学
2019年牛客多校第一场B题 Integration 题意 给出一个公式,求值 思路 明显的化简公式题,公式是分母连乘形式,这个时候要想到拆分,那如何拆分母呢,自然是裂项,此时有很多项裂项,我们不妨从 ...
- 2020牛客多校第八场K题
__int128(例题:2020牛客多校第八场K题) 题意: 有n道菜,第i道菜的利润为\(a_i\),且有\(b_i\)盘.你要按照下列要求给顾客上菜. 1.每位顾客至少有一道菜 2.给顾客上菜时, ...
- 牛客多校第一场 B Inergratiion
牛客多校第一场 B Inergratiion 传送门:https://ac.nowcoder.com/acm/contest/881/B 题意: 给你一个 [求值为多少 题解: 根据线代的知识 我们可 ...
随机推荐
- 安装express 出现 错误
w 在网上找了很多都解决不了问题,直到换了文件新建路径就可以了 成功: 学习就是不断发现问题解决问题的过程
- HIVE常用函数(1)聚合函数和序列函数
SUM--sum(汇总字段) over (partition by 分组字段 order by 排序字段) 如果不指定ROWS BETWEEN,默认为从起点到当前行;如果不指定ORDER BY,则将分 ...
- HTML5中的Canvas和SVG
Canvas 和 SVG 都允许我们在浏览器中创建图形,但是它们在根本上是不同的. 1 SVG SVG 是一种使用 XML 描述 2D 图形的语言. SVG 基于 XML,这意味着 SVG DOM 中 ...
- Vue学习笔记【10】——Vue指令之v-if和v-show
Vue指令之v-if和v-show <!DOCTYPE html> <html lang="en"> <head> <meta cha ...
- 使用pangolin库画出轨迹
https://github.com/stevenlovegrove/Pangolin cmake_minimum_required(VERSION 2.8) project(chapter3) ) ...
- js设计模式——6.模板方法模式与职责链模式
js设计模式——6.模板方法模式与职责链模式 职责链模式
- Go语言TCP Socket编程
Golang的主要 设计目标之一就是面向大规模后端服务程序,网络通信这块是服务端 程序必不可少也是至关重要的一部分.在日常应用中,我们也可以看到Go中的net以及其subdirectories下的 ...
- MySQL server has gone away 解决办法
Mysql 5.1 遇到的信息包过大问题 用客户端导入数据的时候,遇到 错误代码: 1153 - Got a packet bigger than 'max_allowed_packet' byt ...
- 解决ajax跨域问题【5种解决方案】
什么是跨域问题?跨域问题来源于JavaScript的"同源策略",即只有 协议+主机名+端口号 (如存在)相同,则允许相互访问.也就是说JavaScript只能访问和操作自己域下的 ...
- Codeforces 1189A Keanu Reeves
题目链接:http://codeforces.com/problemset/problem/1189/A 思路:统计1 和 0 的个数,不相等拆开字符串,否则不拆. AC代码: #include< ...