Python3标准库:heapq堆排序算法
1. heapq堆排序算法
堆(heap)是一个树形数据结构,其中子节点与父节点有一种有序关系。二叉堆(binary heap)可以使用一个有组织的列表或数组表示,其中元素N的子元素位于2*N+1和2*N+2(索引从0开始)。这种布局允许原地重新组织堆,从而不必再添加或删除元素时重新分配大量内存。
最大堆(max-heap)确保父节点大于或等于其两个子节点。最小堆(min-heap)要求父节点小于或等于其子节点。Python的heapq模块实现了一个最小堆。
1.1 创建堆
创建堆有两种基本方式:heappush()和heapify()。
import heapq
import math
from io import StringIO data = [19, 9, 4, 10, 11] def show_tree(tree, total_width=36, fill=' '):
"""Pretty-print a tree."""
output = StringIO()
last_row = -1
for i, n in enumerate(tree):
if i:
row = int(math.floor(math.log(i + 1, 2)))
else:
row = 0
if row != last_row:
output.write('\n')
columns = 2 ** row
col_width = int(math.floor(total_width / columns))
output.write(str(n).center(col_width, fill))
last_row = row
print(output.getvalue())
print('-' * total_width)
print() heap = []
print('random :', data)
print() for n in data:
print('add {:>3}:'.format(n))
heapq.heappush(heap, n)
show_tree(heap)
使用heappush(),从数据源增加新元素时会保持元素的堆排序顺序。
如果数据已经在内存中,那么使用heapify()原地重新组织列表中的元素会更高效。
import heapq
import math
from io import StringIO data = [19, 9, 4, 10, 11] def show_tree(tree, total_width=36, fill=' '):
"""Pretty-print a tree."""
output = StringIO()
last_row = -1
for i, n in enumerate(tree):
if i:
row = int(math.floor(math.log(i + 1, 2)))
else:
row = 0
if row != last_row:
output.write('\n')
columns = 2 ** row
col_width = int(math.floor(total_width / columns))
output.write(str(n).center(col_width, fill))
last_row = row
print(output.getvalue())
print('-' * total_width)
print() print('random :', data)
heapq.heapify(data)
print('heapified :')
show_tree(data)
如果按堆顺序一次一个元素地构建列表,那么结果与构建一个无序列表再调用heapify()是一样的。
1.2 访问堆内容
一旦堆已经被正确组织,则可以使用heappop()删除有最小值的元素。
import heapq
import math
from io import StringIO data = [19, 9, 4, 10, 11] def show_tree(tree, total_width=36, fill=' '):
"""Pretty-print a tree."""
output = StringIO()
last_row = -1
for i, n in enumerate(tree):
if i:
row = int(math.floor(math.log(i + 1, 2)))
else:
row = 0
if row != last_row:
output.write('\n')
columns = 2 ** row
col_width = int(math.floor(total_width / columns))
output.write(str(n).center(col_width, fill))
last_row = row
print(output.getvalue())
print('-' * total_width)
print() print('random :', data)
heapq.heapify(data)
print('heapified :')
show_tree(data)
print() for i in range(2):
smallest = heapq.heappop(data)
print('pop {:>3}:'.format(smallest))
show_tree(data)
这个例子是由标准库文档改写的,其中使用heapify()和heappop()对一个数字队列进行排序。
如果希望在一个操作中删除现有元素并替换为新值,则可以使用heapreplace()。
import heapq
import math
from io import StringIO data = [19, 9, 4, 10, 11] def show_tree(tree, total_width=36, fill=' '):
"""Pretty-print a tree."""
output = StringIO()
last_row = -1
for i, n in enumerate(tree):
if i:
row = int(math.floor(math.log(i + 1, 2)))
else:
row = 0
if row != last_row:
output.write('\n')
columns = 2 ** row
col_width = int(math.floor(total_width / columns))
output.write(str(n).center(col_width, fill))
last_row = row
print(output.getvalue())
print('-' * total_width)
print() heapq.heapify(data)
print('start:')
show_tree(data) for n in [0, 13]:
smallest = heapq.heapreplace(data, n)
print('replace {:>2} with {:>2}:'.format(smallest, n))
show_tree(data)
通过原地替换元素,就这样可以维持一个固定大小的堆,如按优先级排序的作业队列。
1.3 堆的数据极值
heapq还包括两个检查可迭代对象(iterable)的函数,可以查找其中包含的最大或最小值的范围。
import heapq
import math
from io import StringIO data = [19, 9, 4, 10, 11] def show_tree(tree, total_width=36, fill=' '):
"""Pretty-print a tree."""
output = StringIO()
last_row = -1
for i, n in enumerate(tree):
if i:
row = int(math.floor(math.log(i + 1, 2)))
else:
row = 0
if row != last_row:
output.write('\n')
columns = 2 ** row
col_width = int(math.floor(total_width / columns))
output.write(str(n).center(col_width, fill))
last_row = row
print(output.getvalue())
print('-' * total_width)
print() print('all :', data)
print('3 largest :', heapq.nlargest(3, data))
print('from sort :', list(reversed(sorted(data)[-3:])))
print('3 smallest:', heapq.nsmallest(3, data))
print('from sort :', sorted(data)[:3])
只有当n值(n>1)相对小时使用nlargest()和nsmallest()才算高效,不过有些情况下这两个函数会很方便。
1.4 高效合并有序序列
对于小数据集,将多个有序序列合并到一个新序列很容易。
list(sorted(itertools.chain(*data)))
对于较大的数据集,这个技术可能会占用大量内存。merge()不是对整个合并后的序列排序,而是使用一个堆一次一个元素地生成一个新序列,利用固定大小的内存确定下一个元素。
import heapq
import random random.seed(2016) data = []
for i in range(4):
new_data = list(random.sample(range(1, 101), 5))
new_data.sort()
data.append(new_data) for i, d in enumerate(data):
print('{}: {}'.format(i, d)) print('\nMerged:')
for i in heapq.merge(*data):
print(i, end=' ')
print()
由于merge()的实现使用了一个堆,所以它会根据所合并的序列个数消耗内存,而不是根据这些序列中的元素个数。
Python3标准库:heapq堆排序算法的更多相关文章
- Python3 标准库
Python3标准库 更详尽:http://blog.csdn.net/jurbo/article/details/52334345 文本 string:通用字符串操作 re:正则表达式操作 diff ...
- 8.Python3标准库--数据持久存储与交换
''' 持久存储数据以便长期使用包括两个方面:在对象的内存中表示和存储格式之间来回转换数据,以及处理转换后数据的存储区. 标准库包含很多模块可以处理不同情况下的这两个方面 有两个模块可以将对象转换为一 ...
- python023 Python3 标准库概览
Python3 标准库概览 操作系统接口 os模块提供了不少与操作系统相关联的函数. >>> import os >>> os.getcwd() # 返回当前的工作 ...
- python3标准库总结
Python3标准库 操作系统接口 os模块提供了不少与操作系统相关联的函数. ? 1 2 3 4 5 6 >>> import os >>> os.getcwd( ...
- 7.Python3标准库--文件系统
''' Python的标准库中包含大量工具,可以处理文件系统中的文件,构造和解析文件名,还可以检查文件内容. 处理文件的第一步是要确定处理的文件的名字.Python将文件名表示为简单的字符串,另外还提 ...
- 1.Python3标准库--前戏
Python有一个很大的优势便是在于其拥有丰富的第三方库,可以解决很多很多问题.其实Python的标准库也是非常丰富的,今后我将介绍一下Python的标准库. 这个教程使用的书籍就叫做<Pyth ...
- 比较两个文件的异同Python3 标准库difflib 实现
比较两个文件的异同Python3 标准库difflib 实现 对于要比较两个文件特别是配置文件的差异,这种需求很常见,如果用眼睛看,真是眼睛疼. 可以使用linux命令行工具diff a_file b ...
- 3.Python3标准库--数据结构
(一)enum:枚举类型 import enum ''' enum模块定义了一个提供迭代和比较功能的枚举类型.可以用这个为值创建明确定义的符号,而不是使用字面量整数或字符串 ''' 1.创建枚举 im ...
- 读书分享全网学习资源大合集,推荐Python3标准库等五本书「02」
0.前言 在此之前,我已经为准备学习python的小白同学们准备了轻量级但超无敌的python开发利器之visio studio code使用入门系列.详见 1.PYTHON开发利器之VS Code使 ...
随机推荐
- Spring Cloud中Eureka注册显示UNKNOWN问题
这是由于application.yml里spring没有配置实例造成的
- 从O365中获取users到D365中 使用flow
在我上篇blog中讲解到了怎么用代码把O365 users 获取到D365中. 从O365中获取users到D365中 这几天一直在研究flow, 发现flow可以更简单的完成这个功能. 一开始没有考 ...
- Boyer-Moore 算法 Leetcode169
Boyer-Moore 算法 Leetcode169 一.题目 169. 多数元素 给定一个大小为 n 的数组,找到其中的多数元素.多数元素是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素. 你可以假 ...
- .net core控制台使用log4net
第一步,Nuget log4net包 第二步,在项目中添加一个新xml文件,我这里是直接从.net framework的项目里复制过来的config文件,不过效果是一样的 内容如下: ?xml ver ...
- C语言出现 "initializer element is not constant" 错误的原因
当在全局变量定义一个指针变量,并动态分配内存后,发现竟然编译不过去,并提示 ""initializer element is not constant"": c ...
- CCF_201612-2_火车购票
http://115.28.138.223/view.page?gpid=T46 水. #include<iostream> #include<cstring> #includ ...
- WeChall_ Training: Stegano I (Training, Stegano)
This is the most basic image stegano I can think of. 解题: 一张小图片,文本方式打开.
- HDU_3652_数位dp
http://acm.hdu.edu.cn/showproblem.php?pid=3652 cal(a,b,c,d),a表示当前位置,b表示是否有13的3种状态,c表示前面的数%13后的剩余,d表示 ...
- SpringBoot2 整合Kafka组件,应用案例和流程详解
本文源码:GitHub·点这里 || GitEE·点这里 一.搭建Kafka环境 1.下载解压 -- 下载 wget http://mirror.bit.edu.cn/apache/kafka/2.2 ...
- 再次聚焦DOCKER MACHINE CODE 2048
如果有一种feeling让世界难以释怀,那一定是发掘(挖土机那家强?)了什么了不起的东西 如果有一种贴图叫做深夜,仍不止息,那一定是饱含深意的贴图 // TODO: I'm not super hap ...