文件系统的文件太多,而且是照搬的MINIX的文件系统,不想继续分析下去了。缓冲区机制和文件系统密切相关,所以这里就简单分析一下缓冲区机制。

buffer.c 程序用于对高速缓冲区(池)进行操作和管理。高速缓冲区位于内核代码块和主内存区之间,见图9-9 中所示。高速缓冲区在块设备与内核其它程序之间起着一个桥梁作用。除了块设备驱动程序以外,内核程序如果需要访问块设备中的数据,就都需要经过高速缓冲区来间接地操作。

因为读取磁盘数据很耗费时间,所以缓冲区的作用就是存储读过的磁盘数据,下次有需求直接从缓冲区读取,缓冲区是内存区域,读取非常快速。

图中高速缓冲区的起始位置从内核模块末段end 标号开始,end 是内核模块链接期间由链接程序(ld)设置的一个值,内核代码中没有定义这个符号。当在连接生成system 模块时,ld 程序的digest_symbols()函数会产生此符号。该函数主要用于对全局变量进行引用赋值,并且计算每个被连接文件的其始和大小,其中也设置了end 的值,它等于data_start + datasize + bss_size,也即内核模块的末段。

整个高速缓冲区被划分成1024 字节大小的缓冲块,正好与块设备上的磁盘逻辑块大小相同。高速缓冲采用hash 表和空闲缓冲块队列进行操作管理。在缓冲区初始化过程中,从缓冲区的两端开始,同时分别设置缓冲块头结构和划分出对应的缓冲块。缓冲区的高端被划分成一个个1024 字节的缓冲块,低端则分别建立起对应各缓冲块的缓冲头结构buffer_head(include/linux/fs.h,68 行),用于描述对应缓冲块的属性和把所有缓冲头连接成链表。直到它们之间已经不能再划分出缓冲块为止,见图9-10 所示。而各个buffer_head 被链接成一个空闲缓冲块双向链表结构。详细结构见图9-11 所示。

缓冲区的大致结构可参照buffer.c的buffer_init函数:

extern int end;			// 由连接程序ld 生成的表明程序末端的变量。[??]
struct buffer_head *start_buffer = (struct buffer_head *) &end;
struct buffer_head *hash_table[NR_HASH]; // NR_HASH = 307 项。
static struct buffer_head *free_list; //// 缓冲区初始化函数。
// 参数buffer_end 是指定的缓冲区内存的末端。对于系统有16MB 内存,则缓冲区末端设置为4MB。
// 对于系统有8MB 内存,缓冲区末端设置为2MB。
void
buffer_init (long buffer_end)
{
struct buffer_head *h = start_buffer;
void *b;
int i; // 如果缓冲区高端等于1Mb,则由于从640KB-1MB 被显示内存和BIOS 占用,因此实际可用缓冲区内存
// 高端应该是640KB。否则内存高端一定大于1MB。
if (buffer_end == 1 << 20)
b = (void *) (640 * 1024);
else
b = (void *) buffer_end;
// 这段代码用于初始化缓冲区,建立空闲缓冲区环链表,并获取系统中缓冲块的数目。
// 操作的过程是从缓冲区高端开始划分1K 大小的缓冲块,与此同时在缓冲区低端建立描述该缓冲块
// 的结构buffer_head,并将这些buffer_head 组成双向链表。
// h 是指向缓冲头结构的指针,而h+1 是指向内存地址连续的下一个缓冲头地址,也可以说是指向h
// 缓冲头的末端外。为了保证有足够长度的内存来存储一个缓冲头结构,需要b 所指向的内存块
// 地址 >= h 缓冲头的末端,也即要>=h+1。
while ((b -= BLOCK_SIZE) >= ((void *) (h + 1)))
{
h->b_dev = 0; // 使用该缓冲区的设备号。
h->b_dirt = 0; // 脏标志,也即缓冲区修改标志。
h->b_count = 0; // 该缓冲区引用计数。
h->b_lock = 0; // 缓冲区锁定标志。
h->b_uptodate = 0; // 缓冲区更新标志(或称数据有效标志)。
h->b_wait = NULL; // 指向等待该缓冲区解锁的进程。
h->b_next = NULL; // 指向具有相同hash 值的下一个缓冲头。
h->b_prev = NULL; // 指向具有相同hash 值的前一个缓冲头。
h->b_data = (char *) b; // 指向对应缓冲区数据块(1024 字节)。
h->b_prev_free = h - 1; // 指向链表中前一项。
h->b_next_free = h + 1; // 指向链表中下一项。
h++; // h 指向下一新缓冲头位置。
NR_BUFFERS++; // 缓冲区块数累加。
if (b == (void *) 0x100000) // 如果地址b 递减到等于1MB,则跳过384KB,
b = (void *) 0xA0000; // 让b 指向地址0xA0000(640KB)处。
}
h--; // 让h 指向最后一个有效缓冲头。
free_list = start_buffer; // 让空闲链表头指向头一个缓冲区头。
free_list->b_prev_free = h; // 链表头的b_prev_free 指向前一项(即最后一项)。
h->b_next_free = free_list; // h 的下一项指针指向第一项,形成一个环链。
// 初始化hash 表(哈希表、散列表),置表中所有的指针为NULL。
for (i = 0; i < NR_HASH; i++)
hash_table[i] = NULL;
}

根据上面的理论知识,这段代码很好分析,就不多做解释了。

Linux0.11内核--缓冲区机制大致分析的更多相关文章

  1. Linux0.11内核--系统调用机制分析

    [版权所有,转载请注明出处.出处:http://www.cnblogs.com/joey-hua/p/5570691.html ] Linux内核从启动到初始化也看了好些个源码文件了,这次看到kern ...

  2. Linux-0.11内核源代码分析系列:内存管理get_free_page()函数分析

    Linux-0.11内存管理模块是源码中比較难以理解的部分,如今把笔者个人的理解发表 先发Linux-0.11内核内存管理get_free_page()函数分析 有时间再写其它函数或者文件的:) /* ...

  3. linux0.11内核源码剖析:第一篇 内存管理、memory.c【转】

    转自:http://www.cnblogs.com/v-July-v/archive/2011/01/06/1983695.html linux0.11内核源码剖析第一篇:memory.c July  ...

  4. Linux0.11内核剖析--内核体系结构

    一个完整可用的操作系统主要由 4 部分组成:硬件.操作系统内核.操作系统服务和用户应用程序,如下图所示: 用户应用程序是指那些字处理程序. Internet 浏览器程序或用户自行编制的各种应用程序: ...

  5. Linux0.11内核--内存管理之1.初始化

    [版权所有,转载请注明出处.出处:http://www.cnblogs.com/joey-hua/p/5597705.html ] Linux内核因为使用了内存分页机制,所以相对来说好理解些.因为内存 ...

  6. Linux0.11内核剖析--初始化程序(init)

    1.概述 在内核源代码的 init/目录中只有一个 main.c 文件. 系统在执行完 boot/目录中的 head.s 程序后就会将执行权交给 main.c.该程序虽然不长,但却包括了内核初始化的所 ...

  7. Linux0.11内核源码——内核态线程(进程)切换的实现

    以fork()函数为例,分析内核态进程切换的实现 首先在用户态的某个进程中执行了fork()函数 fork引发中断,切入内核,内核栈绑定用户栈 首先分析五段论中的第一段: 中断入口:先把相关寄存器压栈 ...

  8. linux0.11内核源码——进程各状态切换的跟踪

    准备工作 1.进程的状态有五种:新建(N),就绪或等待(J),睡眠或阻塞(W),运行(R),退出(E),其实还有个僵尸进程,这里先忽略 2.编写一个样本程序process.c,里面实现了一个函数 /* ...

  9. linux0.11内核源码——boot和setup部分

    https://blog.csdn.net/KLKFL/article/details/80730131 https://www.cnblogs.com/joey-hua/p/5528228.html ...

随机推荐

  1. hdu4833 Best Financing(DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4833 这道题目关键的思想是从后往前dp,dp[i]表示在第i处投资xi能获得的最大收益,其中xi表示从 ...

  2. 倾情大奉送--Spark入门实战系列

    这一两年Spark技术很火,自己也凑热闹,反复的试验.研究,有痛苦万分也有欣喜若狂,抽空把这些整理成文章共享给大家.这个系列基本上围绕了Spark生态圈进行介绍,从Spark的简介.编译.部署,再到编 ...

  3. aud$定位错误用户密码登陆数据库的具体信息

    环境:Oracle 11.2.0.3 客户端使用错误的用户密码登陆数据库 查询最近1天由于密码错误登陆失败的信息 查询当前审计中有哪些returncode值 1. 客户端使用错误的用户密码登陆数据库 ...

  4. 由一个DAOHelper类引发的思考

    这是一篇发牢骚的文章,可以这么说吧.DAOHelper究竟有什么用呢?用我自己的话去理解,DAOHelper的存在正是敏捷开发的产物,即快速开发. 我们究竟能从项目中学到什么呢?有的人可能会说,从一个 ...

  5. Windows Server 2008 下解析二级域名的方法

    昨天去了客户那里部署网站,用的是客户那边的windows server 2008. 本文主要以总结问题点的形式来说. 问题1:本机的数据库是SQL SERVER 2008R2,客户那边的数据库是SQL ...

  6. ztree + ashx +DataTable +Oracle

    问题描述 好久没有使用ztree了,刚才在使用ztree做导航时遇到了几个小问题: 1.返回数据源是undefined . 2.数据出现后树结构没有出现(pIdKey单词拼写错误). 3.在使用Ora ...

  7. Android 源码下载方法(Git 方式clone)

    Android源码对于Android开发者来说,迟早有一天你会用到的,所以就记录一下,分享给读者,希望对读者有用 这里需要使用到Git相关知识,不清楚的可以先阅读,了解的可以跳过 Git-Tortoi ...

  8. 4-MSP430定时器_定时器中断

    一开始没写好就上传了,,,,,,,,这次来个全的 自己学MSP430是为了写一篇关于PID的文章,需要430在proteus上做仿真,一则认为在自动控制算法上PID真的很经典,PLC设备上大多是模块式 ...

  9. OpenCV2学习笔记(一)

    Mat - 图像的容器 在对图像进行处理时,首先需要将图像载入到内存中,而Mat就是图像在内存中的容器,管理着图像在内存中的数据.Mat是C++ 的一个类,由于OpenCV2中引入了内存自动管理机制, ...

  10. 代码的坏味道(4)——过长参数列(Long Parameter List)

    坏味道--过长参数列(Long Parameter List) 特征 一个函数有超过3.4个入参. 问题原因 过长参数列可能是将多个算法并到一个函数中时发生的.函数中的入参可以用来控制最终选用哪个算法 ...