题目传送门:codevs 3981 动态最大子段和

题目描述 Description

题目还是简单一点好...

有n个数,a[1]到a[n]。

接下来q次查询,每次动态指定两个数l,r,求a[l]到a[r]的最大子段和。

子段的意思是连续非空区间。

输入描述 Input Description

第一行一个数n。

第二行n个数a[1]~a[n]。

第三行一个数q。

以下q行每行两个数l和r。

输出描述 Output Description

q行,每行一个数,表示a[l]到a[r]的最大子段和。

样例输入 Sample Input

7
2 3 -233 233 -23 -2 233
4
1 7
5 6
2 5
2 3

样例输出 Sample Output

441
-2
233
3

数据范围及提示 Data Size & Hint

对于50%的数据,q*n<=10000000。

对于100%的数据,1<=n<=200000,1<=q<=200000。

a[1]~a[n]在int范围内,但是答案可能超出int范围。

数据保证1<=l<=r<=n。

空间128M,时间1s。

题目大意:

  求解区间 a[l]~a[r] 的最大子段和

解题思路:

  用线段树维护区间最大值。开几个变量存区间和sum,完全在左区间的最大值max_l,完全在右区间的最大值max_r,跨左右区间的最大值max。

 #include <bits/stdc++.h>
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
using namespace std;
const int N = + ;
typedef long long int ll;
struct node
{
int l,r;
ll max_,max_l,max_r,sum;
} a[N<<];
int n,q,x,y;
ll ans;
void up(int rt)
{
a[rt].max_=max(max(a[rt<<].max_,a[rt<<|].max_),a[rt<<].max_r+a[rt<<|].max_l);
a[rt].max_l=max(a[rt<<].max_l,a[rt<<].sum+a[rt<<|].max_l);
a[rt].max_r=max(a[rt<<|].max_r,a[rt<<|].sum+a[rt<<].max_r);
a[rt].sum=a[rt<<].sum+a[rt<<|].sum;
}
void build(int rt,int l,int r)
{
a[rt].l=l,a[rt].r=r;
if (l==r)
{
scanf("%lld",&a[rt].max_);
a[rt].max_l=a[rt].max_r=a[rt].sum=a[rt].max_;
return ;
}
int mid = (l+r)>>;
build(lson);
build(rson);
up(rt);
}
void query(int rt,int L,int R,ll &ans,ll &ansl,ll &ansr)
{
if (L<=a[rt].l&&a[rt].r<=R)
{
ans=a[rt].max_;
ansl=a[rt].max_l;
ansr=a[rt].max_r;
return ;
}
int mid=(a[rt].l+a[rt].r)>>;
if (mid>=R) query(rt<<,L,R,ans,ansl,ansr);
else if (mid<L) query(rt<<|,L,R,ans,ansl,ansr);
else
{
ll lans=,lansl=,lansr=,rans=,ransl=,ransr=;
query(rt<<,L,R,lans,lansl,lansr);
query(rt<<|,L,R,rans,ransl,ransr);
ans=max(max(lans,rans),lansr+ransl);
ansl=max(lansl,ransl+a[rt<<].sum);
ansr=max(ransr,lansr+a[rt<<|].sum);
}
}
int main()
{
scanf("%d",&n);
build(,,n);
for ( scanf("%d",&q); q; q--)
{
scanf("%d%d",&x,&y);
ll ans=,ansl=,ansr=;
query(,x,y,ans,ansl,ansr);
printf("%lld\n",ans);
}
return ;
}

codevs 3981 动态最大子段和(线段树)的更多相关文章

  1. codevs 3981 动态最大子段和

    3981 动态最大子段和 http://codevs.cn/problem/3981/    题目等级 : 钻石 Diamond   题目描述 Description 题目还是简单一点好... 有n个 ...

  2. 【BZOJ3295】动态逆序对(线段树,树状数组)

    [BZOJ3295]动态逆序对(线段树,树状数组) 题面 Description 对于序列A,它的逆序对数定义为满足iAj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的 ...

  3. 指针-动态开点&合并线段树

    一个知识点不在一道题里说是没有灵魂的 线段树是用来处理区间信息的咯 但是往往因为需要4倍空间让许多人退却,而动态开点的线段树就非常棒 仿佛只用2倍就可以咯 指针保存位置,即节点信息,是很舒适的,所以用 ...

  4. BZOJ 4636 (动态开节点)线段树

    思路: 偷懒 懒得离散化 搞了个动态开节点的线段树 (其实是一样的--..) 注意会有a=b的情况 要判掉 //By SiriusRen #include <cstdio> #includ ...

  5. zoj 2112 Dynamic Rankings 动态第k大 线段树套Treap

    Dynamic Rankings Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/show ...

  6. LA 3938 动态最大连续和 线段树

    题目链接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show ...

  7. Luogu P4643 【模板】动态dp(矩阵乘法,线段树,树链剖分)

    题面 给定一棵 \(n\) 个点的树,点带点权. 有 \(m\) 次操作,每次操作给定 \(x,y\) ,表示修改点 \(x\) 的权值为 \(y\) . 你需要在每次操作之后求出这棵树的最大权独立集 ...

  8. [BZOJ3638 && BZOJ3272]带修区间不相交最大K子段和(线段树模拟费用流)

    https://www.cnblogs.com/DaD3zZ-Beyonder/p/5634149.html k可重区间集问题有两种建图方式,可能这一种才可以被线段树优化. 换个角度看,这也是一个类似 ...

  9. luoguU60884 【模板】动态点分治套线段树

    题目连接:https://www.luogu.org/problemnew/show/U60884 题意:有N个点,标号为1∼N,用N−1条双向带权通道连接,保证任意两个点能互相到达. Q次询问,问从 ...

随机推荐

  1. Python的内置方法,abs,all,any,basestring,bin,bool,bytearray,callable,chr,cmp,complex,divmod

    Python的内置方法 abs(X):返回一个数的绝对值,X可以是一个整数,长整型,或者浮点数,如果X是一个复数,此方法返回此复数的绝对值(此复数与它的共轭复数的乘积的平方根) >>> ...

  2. jquery实用应用之jquery操作radio、checkbox、select

    本文收集一些jquery的实用技巧,非常实用的哦,其中对radio.checkbox.select选中与取值的方法. 获取一组radio被选中项的值var item = $('input[@name= ...

  3. tp5 thinkphp5 多表关联查询 join查询

    model下: $res = \think\Db::name('article') ->alias("a") //取一个别名 ->join('admin ad','a. ...

  4. Python 基础课程大纲

      c0102_变量及数据类型.ipynb 1.数据类型概述 Python标准数据类型:Numbers数字,String字符串,List列表,Tuple元祖,Dici字典.布尔类型 # Numbers ...

  5. java 泛型接口和方法

    java5后,可以声明泛型接口,声明方式和声明泛型类是一样的. public interface IDAO<T>{} 泛型接口子类有两种方式: 直接在子类后申明泛型: 在子类实现的接口中给 ...

  6. H3C调试信息输出的例子

  7. linux测试 scullpipe 驱动

    我们已经见到了 scullpipe 驱动如何实现阻塞 I/O. 如果你想试一试, 这个驱动的源码 可在剩下的本书例子中找到. 阻塞 I/O 的动作可通过打开 2 个窗口见到. 第一个可运行 一个命令诸 ...

  8. C# 自动翻页 PPT 测试脚本

    本文告诉大家一个可以使用的 C# 脚本,可以用来自动打开 PPT 文件,然后不断执行翻页.每次翻页都截图.翻页之后自动关闭 PPT 再次打开 最近发现给 Office 做的插件,会在一定翻页次数的时候 ...

  9. Linux 内核同步 urb

    不幸的是, 同步 urb 没有一个象中断, 控制, 和块 urb 的初始化函数. 因此它们必须在 驱动中"手动"初始化, 在它们可被提交给 USB 核心之前. 下面是一个如何正确初 ...

  10. centos7 teamviewer

    Step 1: Install the prerequisites. # yum install glibc alsa-lib freetype libICE libSM libX11 libXau ...