In the big cities, the subway systems always look so complex to the visitors. To give you some sense, the following figure shows the map of Beijing subway. Now you are supposed to help people with your computer skills! Given the starting position of your user, your task is to find the quickest way to his/her destination.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 100), the number of subway lines. Then N lines follow, with the i-th (,) line describes the i-th subway line in the format:

M S[1] S[2] ... S[M]

where M (≤ 100) is the number of stops, and S[i]'s (,) are the indices of the stations (the indices are 4-digit numbers from 0000 to 9999) along the line. It is guaranteed that the stations are given in the correct order -- that is, the train travels between S[i] and S[i+1] (,) without any stop.

Note: It is possible to have loops, but not self-loop (no train starts from S and stops at S without passing through another station). Each station interval belongs to a unique subway line. Although the lines may cross each other at some stations (so called "transfer stations"), no station can be the conjunction of more than 5 lines.

After the description of the subway, another positive integer K (≤ 10) is given. Then K lines follow, each gives a query from your user: the two indices as the starting station and the destination, respectively.

The following figure shows the sample map.

Note: It is guaranteed that all the stations are reachable, and all the queries consist of legal station numbers.

Output Specification:

For each query, first print in a line the minimum number of stops. Then you are supposed to show the optimal path in a friendly format as the following:

Take Line#X1 from S1 to S2.
Take Line#X2 from S2 to S3.
......

where Xi's are the line numbers and Si's are the station indices. Note: Besides the starting and ending stations, only the transfer stations shall be printed.

If the quickest path is not unique, output the one with the minimum number of transfers, which is guaranteed to be unique.

Sample Input:

4
7 1001 3212 1003 1204 1005 1306 7797
9 9988 2333 1204 2006 2005 2004 2003 2302 2001
13 3011 3812 3013 3001 1306 3003 2333 3066 3212 3008 2302 3010 3011
4 6666 8432 4011 1306
3
3011 3013
6666 2001
2004 3001

Sample Output:

2
Take Line#3 from 3011 to 3013.
10
Take Line#4 from 6666 to 1306.
Take Line#3 from 1306 to 2302.
Take Line#2 from 2302 to 2001.
6
Take Line#2 from 2004 to 1204.
Take Line#1 from 1204 to 1306.
Take Line#3 from 1306 to 3001.
题⽬⼤意:找出⼀条路线,使得对任何给定的起点和终点,可以找出中途经停站最少的路线;如果经
停站⼀样多,则取需要换乘线路次数最少的路线~
【很简单的,别跑^_^】
分析:⼀遍DFS即可~DFS过程中要维护两个变量:minCnt-中途经停的最少的站; minTransfer-需要换乘
的最⼩次数~
0.可以这样计算出⼀条线路的换乘次数:在line[10000][10000]的数组中保存每两个相邻站中间的线路是
⼏号线~从头到尾遍历最终保存的路径,preLine为前⼀⼩段的线路编号,如果当前的结点和前⼀个结
点组成的这条路的线路编号和preLine不同,说明有⼀个换乘,就将cnt+1,最后遍历完累加的cnt即是
换乘的次数~ 
update:由于新的PAT系统中会显示原解法有⼀个测试⽤例内存超限,考虑到line[10000][10000]存储的
⽅式太暴⼒了,所以将line换成了unordered_map<int, int> line存储的⽅式,第⼀个int⽤来存储线路,
每次将前四位存储第⼀个线路,后四位存储第⼆个线路,使⽤a[i-1]*10000+a[i]的⽅式存储,第⼆个int
⽤来保存两个相邻中间的线路是⼏号线~
1.可以这样计算出⼀条线路中途停站的次数:在dfs的时候有个变量cnt,表示当前路线是所需乘的第⼏
个站,每次dfs时候将cnt+1表示向下遍历⼀层~cnt就是当前中途停站的次数~
2.可以这样输出结果:和计算线路换乘次数的思路⼀样,每当preLine和当前Line值不同的时候就输出
⼀句话~保存preTransfer表示上⼀个换乘站,最后不要忘记输出preTransfer和最后⼀个站之间的路即使
最后⼀个站并不是换乘站~
喵呜~
 #include <iostream>
#include <vector>
#include <unordered_map>
using namespace std;
vector<int> route[];
int visit[], minCnt, minTra, n, m, k, start, end1;
unordered_map<int, int>line;
vector<int>path, tempPath;
int transferCnt(vector<int>a)
{
int cnt = -, preLine = ;
for (int i = ; i < a.size(); ++i)
{
if (line[a[i - ] * + a[i]] != preLine)
{
cnt++;//换乘了
preLine = line[a[i - ] * + a[i]];
}
}
return cnt;
}
void DFS(int node, int cnt)
{
if (node == end1 && (cnt < minCnt || (cnt == minCnt && transferCnt(tempPath) < minTra)))
{
minCnt = cnt;
minTra = transferCnt(tempPath);
path = tempPath;
}
if (node == end1)return;
for (int i = ; i < route[node].size(); ++i)
{
if (visit[route[node][i]] == )//未遍历过
{
visit[route[node][i]] = ;
tempPath.push_back(route[node][i]);//保存可行路径
DFS(route[node][i], cnt + );//经过一站
visit[route[node][i]] = ;
tempPath.pop_back();//使用回溯法
}
}
}
int main()
{
cin >> n;
for (int i = ; i <= n; ++i)
{
cin >> m >> start;
for (int j = ; j < m; ++j)
{
cin >> end1;
route[start].push_back(end1);
route[end1].push_back(start);
line[start * + end1] = line[end1 * + start] = i;//用pot1*10000+pot来表示这两个站是可行的
start = end1;
}
}
cin >> k;
while (k--)
{
cin >> start >> end1;
minCnt = minTra = INT32_MAX-;
tempPath.clear();
tempPath.push_back(start);
visit[start] = ;
DFS(start, );
visit[start] = ;
cout << minCnt << endl;
int preLine = , preTra = start;
for (int i = ; i < path.size(); ++i)
{
if (line[path[i - ] * + path[i]] != preLine)//换乘了
{
if (preLine != )
printf("Take Line#%d from %04d to %04d.\n", preLine, preTra, path[i - ]);
preLine = line[path[i - ] * + path[i]];
preTra = path[i - ];
}
}
printf("Take Line#%d from %04d to %04d.\n", preLine, preTra, end1);
}
return ;
}

PAT甲级——A1131 Subway Map【30】的更多相关文章

  1. PAT甲级1131. Subway Map

    PAT甲级1131. Subway Map 题意: 在大城市,地铁系统对访客总是看起来很复杂.给你一些感觉,下图显示了北京地铁的地图.现在你应该帮助人们掌握你的电脑技能!鉴于您的用户的起始位置,您的任 ...

  2. PAT甲级——1131 Subway Map (30 分)

    可以转到我的CSDN查看同样的文章https://blog.csdn.net/weixin_44385565/article/details/89003683 1131 Subway Map (30  ...

  3. A1131. Subway Map (30)

    In the big cities, the subway systems always look so complex to the visitors. To give you some sense ...

  4. PAT甲级1131 Subway Map【dfs】【输出方案】

    题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805347523346432 题意: 告诉你一个地铁线路图,站点都是 ...

  5. PAT甲级1111. Online Map

    PAT甲级1111. Online Map 题意: 输入我们当前的位置和目的地,一个在线地图可以推荐几条路径.现在你的工作是向你的用户推荐两条路径:一条是最短的,另一条是最快的.确保任何请求存在路径. ...

  6. PAT甲级——1111 Online Map (单源最短路经的Dijkstra算法、priority_queue的使用)

    本文章同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90041078   1111 Online Map (30 分) ...

  7. PAT 1131. Subway Map (30)

    最短路. 记录一下到某个点,最后是哪辆车乘到的最短距离.换乘次数以及从哪个位置推过来的,可以开$map$记录一下. #include<map> #include<set> #i ...

  8. PAT甲级——A1111 Online Map【30】

    Input our current position and a destination, an online map can recommend several paths. Now your jo ...

  9. PAT A1131 Subway Map

    dfs,选择最优路径并输出~ 这道题难度非常炸裂,要求完完整整自己推一遍,DFS才算过关!思路:一遍dfs,过程中要维护两个变量,minCnt 中途停靠最少的站.minTransfer需要换成的最少次 ...

随机推荐

  1. Qt 【无法打开 xxxx头文件】

    经过多次磕碰,终于发现了通用的办法. 测试环境Qt5.5.1 mvcs 比如需要用到QtWin 直接去包含然后运行,but fail, 我去查找他的父类  QtWinExtras Qt自带的自动补全, ...

  2. java常用类——比较器

    Comparable和Comparator接口都是为了对类进行比较,众所周知,诸如Integer,double等基本数据类型,java可以对他们进行比较,而对于类的比较,需要人工定义比较用到的字段比较 ...

  3. 继承中的隐藏(hide)重写(Override)和多态(Polymorphism)

    继承中的隐藏:(不要使用隐藏,语法没有错误但是开发项目时会被视为错误) 在继承类中完全保留基类中的函数名 //基类,交通工具 class Vehicle { public void Run() { C ...

  4. thinkphp 数据分页

    通常在数据查询后都会对数据集进行分页操作,ThinkPHP也提供了分页类来对数据分页提供支持. 下面是数据分页的两种示例. 第一种:利用Page类和limit方法 $User = M('User'); ...

  5. thinkphp 性能调试

    开发过程中,有些时候为了测试性能,经常需要调试某段代码的运行时间或者内存占用开销,系统提供了G方法可以很方便的获取某个区间的运行时间和内存占用情况. 例如: 富瑞联华大理石平台大理石平台检定规程 G( ...

  6. C++之内存分区

  7. Invalid bound statement (not found): com.my.demo.mapper.UserMapper.getAll

    网上的方法全试了,配置全对,很奇怪. 最后一查,竟然忘记把mapper保存为xml格式. 记录一下.

  8. LA2218 Triathlon /// 半平面交 oj22648

    题目大意: 铁人三项分连续三段:游泳 自行车 赛跑 已知各选手在每个单项中的速度v[i],u[i],w[i] 设计每个单项的长度 可以让某个特定的选手获胜 判断哪些选手有可能获得冠军 输出n行 有可能 ...

  9. C9 vs 三星

    我还是更喜欢 C9, 可惜当年的牛B人物 LemonNation 不在了,C9 赢 三星 一局的机会都没有了. 伟大的 LemonNation ,软件工程学硕士, 2014年,LemonNation ...

  10. C 二维数组与指针

    http://c.biancheng.net/view/2022.html 1. 区分指针数组和数组指针 指针数组:存放指针的数组,如 int *pstr[5] = NULL; 数组中每个元素存放的是 ...