function [X,Y,T,auc,optrocpt,subY,subYnames] = ...
perfcurve(labels,scores,posClass,varargin)
%PERFCURVE Compute Receiver Operating Characteristic (ROC) curve or other
% performance curve for classifier output.
%
% [X,Y] = PERFCURVE(LABELS,SCORES,POSCLASS) computes a ROC curve for a
% vector of classifier predictions SCORES given true class labels,
% LABELS. The labels can be a numeric vector, logical vector, character
% matrix, cell array of strings or categorical vector (see help for
% groupingvariable). SCORES is a numeric vector of scores returned by a
% classifier for some data. This vector must have as many elements as
% LABELS does. POSCLASS is the positive class label (scalar). POSCLASS
% can be numeric (for numeric LABELS), logical (for logical LABELS), a
% character string (for character LABELS), a character string or a
% cellstr scalar (when LABELS are a cell array of strings), and a
% categorical scalar (for categorical LABELS). The specified positive
% class must be in the array of input labels. The returned values X and Y
% are coordinates for the performance curve and can be visualized with
% PLOT(X,Y). By default, X is false positive rate, FPR, (equivalently,
% fallout, or 1-specificity) and Y is true positive rate, TPR,
% (equivalently, recall, or sensitivity).
%
% [X,Y,T] = PERFCURVE(LABELS,SCORES,POSCLASS) returns an array T of
% thresholds on classifier scores for the computed values of X and Y. It
% has the same number of rows as X and Y. For each threshold, TP is the
% count of true positive observations with scores greater or equal to
% this threshold, and FP is the count of false positive observations with
% scores greater or equal to this threshold. PERFCURVE defines negative
% counts, TN and FN, in a similar way and sorts the thresholds in the
% descending order which corresponds to the ascending order of positive
% counts. For the M distinct thresholds found in the array of scores,
% PERFCURVE returns the X, Y and T arrays with M+1 rows. PERFCURVE
% sets elements T(2:M+1) to the distinct thresholds, and T(1) replicates
% T(2). By convention, T(1) represents the highest 'reject all' threshold
% and PERFCURVE computes the corresponding values of X and Y for TP=0 and
% FP=0. T(end) is the lowest 'accept all' threshold for which TN=0 and
% FN=0.
%
% [X,Y,T,AUC] = PERFCURVE(LABELS,SCORES,POSCLASS) returns the area under
% curve (AUC) for the computed values of X and Y. Unless you specify
% XVALS or TVALS, PERFCURVE computes AUC using the returned X and Y
% values. If XVALS or TVALS is a numeric array, PERFCURVE computes AUC
% using X and Y values found from all distinct scores in the interval
% specified by the smallest and largest elements of XVALS or TVALS. For
% example, if XVALS is a numeric array, PERFCURVE finds X values for all
% distinct thresholds and uses a subset of these (with corresponding Y
% values) between MIN(XVALS) and MAX(XVALS) to compute AUC. The function
% uses trapezoidal approximation to estimate the area.
%
% If the first or last value of X or Y are NaN's, PERFCURVE removes them
% to allow calculation of AUC. This takes care of criteria that produce
% NaN's for the special 'reject all' or 'accept all' thresholds, for
% example, positive predictive value (PPV) or negative predictive value
% (NPV).
%
% [X,Y,T,AUC] = PERFCURVE(LABELS,SCORES,POSCLASS) also returns pointwise
% confidence bounds for the computed values X, Y, T, and AUC if you
% supply cell arrays for LABELS and SCORES or set NBOOT to a positive
% integer. To compute the confidence bounds, PERFCURVE uses either
% vertical averaging (VA) or threshold averaging (TA). The returned
% values Y are an M-by-3 array in which the 1st element in every row
% gives the mean value, the 2nd element gives the lower bound and the 3rd
% element gives the upper bound. The returned AUC is a row-vector with 3
% elements following the same convention. For VA, the returned values T
% are an M-by-3 array and X is a column-vector. For TA, the returned
% values X are an M-by-3 matrix and T is a column-vector.
%
% PERFCURVE computes confidence bounds using either cross-validation or
% bootstrap. If you supply cell arrays for LABELS and SCORES, PERFCURVE
% uses cross-validation and treats elements in the cell arrays as
% cross-validation folds. LABELS can be a cell array of numeric vectors,
% logical vectors, character matrices, cell arrays of strings or
% categorical vectors. All elements in LABELS must have the same type.
% SCORES is a cell array of numeric vectors. The cell arrays for LABELS
% and SCORES must have the same number of elements, and the number of
% labels in cell K must be equal to the number of scores in cell K for
% any K in the range from 1 to the number of elements in SCORES.
%
% If you set NBOOT to a positive integer, PERFCURVE generates NBOOT
% bootstrap replicas to compute pointwise confidence bounds. You cannot
% supply cell arrays for LABELS and SCORES and set NBOOT to a positive
% integer at the same time.
%
% PERFCURVE returns pointwise confidence bounds. It does not return
% a simultaneous confidence band for the entire curve.
%
% If you use 'XCrit' or 'YCrit' options described below to set the
% criterion for X or Y to an anonymous function, PERFCURVE can only
% compute confidence bounds by bootstrap.
%
% [X,Y,T,AUC,OPTROCPT] = PERFCURVE(LABELS,SCORES,POSCLASS) returns the
% optimal operating point of the ROC curve as an array of size 1-by-2
% with FPR and TPR values for the optimal ROC operating point. OPTROCPT
% is computed only for the standard ROC curve and set to NaN's otherwise.
% To obtain the optimal operating point for the ROC curve, PERFCURVE
% first finds the slope, S, using
% S = (cost(P|N)-cost(N|N))/(cost(N|P)-cost(P|P)) * N/P
% where cost(I|J) is the cost of assigning an observation of class J to
% class I, and P=TP+FN and N=TN+FP are the total observation counts in
% the positive and negative class, respectively. PERFCURVE then finds the
% optimal operating point by moving the straight line with slope S from
% the upper left corner of the ROC plot (FPR=0,TPR=1) down and to the
% right until it intersects the ROC curve.
%
% [X,Y,T,AUC,OPTROCPT,SUBY] = PERFCURVE(LABELS,SCORES,POSCLASS) returns
% an array of Y values for negative subclasses. If you only specify one
% negative class, SUBY is identical to Y. Otherwise SUBY is a matrix of
% size M-by-K where M is the number of returned values for X and Y, and K
% is the number of negative classes. PERFCURVE computes Y values by
% summing counts over all negative classes. SUBY gives values of the Y
% criterion for each negative class separately. For each negative class,
% PERFCURVE places a new column in SUBY and fills it with Y values for TN
% and FP counted just for this class.
%
% [X,Y,T,AUC,OPTROCPT,SUBY,SUBYNAMES] = PERFCURVE(LABELS,SCORES,POSCLASS,'NegClass',NEGCLASS)
% returns a cell array of negative class names. If you provide an input
% array, NEGCLASS, of negative class names, PERFCURVE copies it into
% SUBYNAMES. If you do not provide NEGCLASS, PERFCURVE extracts SUBYNAMES
% from input labels. The order of SUBYNAMES is the same as the order of
% columns in SUBY, that is, SUBY(:,1) is for negative class SUBYNAMES{1}
% etc.
%
% [X,Y] = PERFCURVE(LABELS,SCORES,POSCLASS,'PARAM1',val1,'PARAM2',val2,...)
% specifies optional parameter name/value pairs:
%
% 'NegClass' - List of negative classes. Can be either a numeric array
% or an array of chars or a cell array of strings. By
% default, NegClass is set to 'all' and all classes found
% in the input array of labels that are not the positive
% class are considered negative. If NegClass is a subset
% of the classes found in the input array of labels,
% observations with labels that do not belong to either
% positive or negative classes are discarded.
%
% 'XCrit' - Criterion to compute for X. This criterion must be a
% monotone function of the positive class score. The
% following criteria are supported:
% TP - number of true positives
% FN - number of false negatives
% FP - number of false positives
% TN - number of true negatives
% TP+FP - sum of TP and FP
% RPP = (TP+FP)/(TP+FN+FP+TN) rate of positive predictions
% RNP = (TN+FN)/(TP+FN+FP+TN) rate of negative predictions
% accu = (TP+TN)/(TP+FN+FP+TN) accuracy
% TPR, sens, reca = TP/(TP+FN) true positive rate, sensitivity, recall
% FNR, miss = FN/(TP+FN) false negative rate, miss
% FPR, fall = FP/(TN+FP) false positive rate, fallout
% TNR, spec = TN/(TN+FP) true negative rate, specificity
% PPV, prec = TP/(TP+FP) positive predictive value, precision
% NPV = TN/(TN+FN) negative predictive value
% ecost=(TP*COST(P|P)+FN*COST(N|P)+FP*COST(P|N)+TN*COST(N|N))/(TP+FN+FP+TN)
% expected cost
% In addition, you can define an arbitrary criterion by supplying
% an anonymous function of 3 arguments, (C,scale,cost), where C is
% a 2-by-2 confusion matrix, scale is a 2-by-1 array of class
% scales, and cost is a 2-by-2 misclassification cost matrix. See
% doc for Performance Curves for more info. Warning: some of these
% criteria return NaN values at one of the two special thresholds,
% 'reject all' and 'accept all'.
%
% 'YCrit' - Criterion to compute for Y. The same criteria as for X
% are supported. This criterion does not have to be a
% monotone function of the positive class score.
%
% 'XVals' - Values for the X criterion. By default, XVals is unset
% and PERFCURVE computes X, Y and T values for all scores.
% You can set XVals to either 'all' or a numeric array. If
% XVals is set to 'all' and TVals is unset, PERFCURVE returns
% X, Y and T values for all scores and computes pointwise
% confidence bounds for Y and T using vertical averaging. If
% XVals is set to a numeric array, PERFCURVE returns X, Y and
% T values for the specified XVals and computes pointwise
% confidence bounds for Y and T at these XVals using vertical
% averaging. You cannot set XVals and TVals at the same time.
%
% 'TVals' - Thresholds for the positive class score. By default, TVals
% is unset and PERFCURVE computes X, Y and T values for all
% scores. You can set TVals to either 'all' or a numeric
% array. If TVals is set to 'all' or unset and XVals is
% unset, PERFCURVE returns X, Y and T values for all scores
% and computes pointwise confidence bounds for Y and X using
% threshold averaging. If TVals is set to a numeric array,
% PERFCURVE returns X, Y and T values for the specified
% thresholds and computes pointwise confidence bounds for Y
% and X at these thresholds using threshold averaging. You
% cannot set XVals and TVals at the same time.
%
% 'UseNearest' - 'on' to use nearest values found in the data instead
% of the specified numeric XVals or TVals and 'off'
% otherwise. If you specify numeric XVals and set
% UseNearest to 'on', PERFCURVE returns nearest unique
% values X found in the data, as well as corresponding
% values of Y and T. If you specify numeric XVals and
% set UseNearest to 'off', PERFCURVE returns these XVals
% sorted. By default this parameter is set to 'on'. If
% you compute confidence bounds by cross-validation or
% bootstrap, this parameter is always 'off'.
%
% 'ProcessNaN' - This argument specifies how PERFCURVE processes NaN
% scores. By default, it is set to 'ignore' and
% observations with NaN scores are removed from the
% data. If the parameter is set to 'addtofalse',
% PERFCURVE adds observations with NaN scores to false
% classification counts in the respective class. That
% is, observations from the positive class are always
% counted as false negative (FN), and observations from
% the negative class are always counted as false
% positive (FP).
%
% 'Prior' - Either string or array with 2 elements. It represents prior
% probabilities for the positive and negative class,
% respectively. Default is 'empirical', that is, prior
% probabilities are derived from class frequencies. If set to
% 'uniform', all prior probabilities are set equal.
%
% 'Cost' - A 2-by-2 matrix of misclassification costs
% [C(P|P) C(N|P); C(P|N) C(N|N)]
% where C(I|J) is the cost of misclassifying
% class J as class I. By default set to [0 0.5; 0.5 0].
%
% 'Alpha' - A numeric value between 0 and 1. PERFCURVE returns
% 100*(1-Alpha) percent pointwise confidence bounds for X, Y,
% T and AUC. By default set to 0.05 for 95% confidence
% interval.
%
% 'Weights' - A numeric vector of non-negative observation weights.
% This vector must have as many elements as SCORES or
% LABELS do. If you supply cell arrays for SCORES and
% LABELS and you need to supply WEIGHTS, you must supply
% them as a cell array too. In this case, every element in
% WEIGHTS must be a numeric vector with as many elements as
% the corresponding element in SCORES:
% NUMEL(WEIGHTS{1})==NUMEL(SCORES{1}) etc. To compute X, Y
% and T or to compute confidence bounds by
% cross-validation, PERFCURVE uses these observation
% weights instead of observation counts. To compute
% confidence bounds by bootstrap, PERFCURVE samples N out
% of N with replacement using these weights as multinomial
% sampling probabilities.
%
% 'NBoot' - Number of bootstrap replicas for computation of confidence
% bounds. Must be a positive integer. By default this
% parameter is set to zero, and bootstrap confidence bounds
% are not computed. If you supply cell arrays for LABELS and
% SCORES, this parameter must be set to zero because
% PERFCURVE cannot use both cross-validation and bootstrap to
% compute confidence bounds.
%
% 'BootType' - Confidence interval type used by BOOTCI to compute
% confidence bounds. You can specify any type supported
% by BOOTCI. 'doc bootci' for more info. By default set to
% 'bca'.
%
% 'BootArg' - Optional input arguments for BOOTCI used to compute
% confidence bounds. You can specify all arguments
% supported by BOOTCI. 'doc bootci' for more info. Empty by
% default.
%
% Example: Plot ROC curve for classification by logistic regression
% load fisheriris
% x = meas(51:end,1:2); % iris data, 2 classes and 2 features
% y = (1:100)'>50; % versicolor=0, virginica=1
% b = glmfit(x,y,'binomial'); % logistic regression
% p = glmval(b,x,'logit'); % get fitted probabilities for scores
%
% [X,Y] = perfcurve(species(51:end,:),p,'virginica');
% plot(X,Y)
% xlabel('False positive rate'); ylabel('True positive rate')
% title('ROC for classification by logistic regression')
%
% % Obtain errors on TPR by vertical averaging
% [X,Y] = perfcurve(species(51:end,:),p,'virginica','nboot',1000,'xvals','all');
% errorbar(X,Y(:,1),Y(:,2)-Y(:,1),Y(:,3)-Y(:,1)); % plot errors
%
% See also fitglm, fitcdiscr, fitNaiveBayes, fitctree, fitcknn, fitcsvm,
% fitensemble, TreeBagger, groupingvariable, bootci. % Copyright 2008-2013 The MathWorks, Inc. % Prepare input parser
p = inputParser;
p.addRequired('labels', ...
@(x) ~isempty(x) && (ischar(x) || isnumeric(x) || islogical(x) ...
|| iscell(x) || isa(x,'categorical')));
p.addRequired('scores',@(x) ~isempty(x) && (isnumeric(x) || iscell(x)));
p.addRequired('PosClass', ...
@(x) ~isempty(x) && (ischar(x) || isnumeric(x) || islogical(x)...
|| iscellstr(x) || isa(x,'categorical')));
p.addParamValue('NegClass','all', ...
@(x) ~isempty(x) && (ischar(x) || isnumeric(x) || iscell(x)));
p.addParamValue('XCrit','FPR',@(x) ischar(x) || isa(x,'function_handle'));
p.addParamValue('YCrit','TPR',@(x) ischar(x) || isa(x,'function_handle'));
p.addParamValue('XVals','', ...
@(x) (ischar(x) && (strcmpi(x,'all') || isempty(x))) || ...
(~isempty(x) && isnumeric(x)) );
p.addParamValue('TVals','', ...
@(x) (ischar(x) && (strcmpi(x,'all') || isempty(x))) || ...
(~isempty(x) && isnumeric(x)) );
p.addParamValue('UseNearest','on',@(x) strcmpi(x,'on') || strcmpi(x,'off'));
p.addParamValue('ProcessNaN','ignore', ...
@(x) strcmpi(x,'ignore') || strcmpi(x,'addtofalse'));
p.addParamValue('Prior','empirical', ...
@(x) (ischar(x) && (strcmpi(x,'empirical') || strcmpi(x,'uniform'))) ...
|| (isnumeric(x) && numel(x)==2) );
p.addParamValue('Cost',[0 0.5; 0.5 0], ...
@(x) isnumeric(x) && size(x,1)==2 && size(x,2)==2);
p.addParamValue('Weights',[],@(x) isempty(x) || isfloat(x) || iscell(x));
p.addParamValue('NBoot',0,@(x) isnumeric(x) && isscalar(x) && x>=0);
p.addParamValue('BootType','bca',@(x) ischar(x));
p.addParamValue('BootArg',{},@(x) iscell(x));
p.addParamValue('Alpha',0.05,@(x) isnumeric(x) && isscalar(x) && x>0 && x<1);
p.FunctionName = 'perfcurve'; % Parse inputs
p.parse(labels,scores,posClass,varargin{:});
negClass = p.Results.NegClass;
xCrit = p.Results.XCrit;
yCrit = p.Results.YCrit;
xVals = p.Results.XVals;
tVals = p.Results.TVals;
toNearest = strcmpi(p.Results.UseNearest,'on');
processNaN = p.Results.ProcessNaN;
prior = p.Results.Prior;
cost = p.Results.Cost;
weights = p.Results.Weights;
nboot = ceil(p.Results.NBoot);
boottype = p.Results.BootType;
bootarg = p.Results.BootArg;
alpha = p.Results.Alpha; % Prepare data
[scores,labels,weights,ncv] = preparedata(scores,labels,weights); % Check compatibility of thresholds and xvals arguments
% By default use supplied thresholds for computing the curve
useTVals = true;
if ~isempty(tVals) && ~isempty(xVals)
error(message('stats:perfcurve:BothTandXsupplied'));
end
% If X values are supplied, use them to compute the curve
if ~isempty(xVals)
useTVals = false;
end % Check if both cross-validation and bootstrap are requested
docv = false;
doboot = false;
if ncv>0
docv = true;
end
if nboot>0
doboot = true;
end
if docv && doboot
error(message('stats:perfcurve:BothCVandBootstrapRequested'));
end
nsub = max(ncv,nboot); % Stack all CV values into one long vector
% ncvel is the number of elements per CV fold
if docv
[ncvel,scores,labels,weights] = stackcv(scores,labels,weights);
ncvcum = [0; cumsum(ncvel)];
end % Convert class labels to a cat array
labels = nominal(labels);
trueNames = categories(labels)'; % as a row
if length(trueNames) < 2
error(message('stats:perfcurve:NotEnoughClasses'));
end % Check costs
if (cost(2,1)-cost(2,2))<=0 || (cost(1,2)-cost(1,1))<=0
error(message('stats:perfcurve:InvalidCost'));
end % Sort scores in the descending order
[sScores,sorted] = sort(scores,1,'descend'); % Get class membership for instances:
% W(i,j) is weight of observation i if observation i is from class j and 0
% otherwise.
% Also, get negative class names.
% W has the size of NxK,
% where N is the number of instances and K is the number of classes.
% subYnames is a cell array of length K-1 with names of negative classes.
% Column W(:,j) is for class subYnames{j-1} (j>1)
[W,subYnames] = membership(labels(sorted),weights(sorted),...
posClass,negClass,trueNames); % Make Wcum, a matrix of cumulative weights in each class.
% Adjust Wcum and scores using the specified behavior for NaN scores.
% Output sorted distinct scores into sScores and corresponding rows into Wcum.
% Wcum and output sScores do not have the same size as W and input sScores.
% To access the full vector of scores, use scores(sorted).
[Wcum,sScores] = makeccum(W,sScores,processNaN); % Get cumulative counts and sorted scores for each subset
if docv
subscores = cell(nsub,1);
Wcumsub = cell(nsub,1);
for isub=1:nsub
tf = sorted>ncvcum(isub) & sorted<=ncvcum(isub+1);
[Wcumsub{isub},subscores{isub}] = ...
makeccum(W(tf,:),scores(sorted(tf)),processNaN);
end
end % Check that confidence bound computation by CV is not requested for
% user-defined criteria
if (isa(xCrit,'function_handle') || isa(yCrit,'function_handle')) && docv
error(message('stats:perfcurve:UserCritConfBounds'));
end % Determine criteria to compute
% The 1st output is the function for computing criterion itself.
% The 2nd output is the function for computing weight for this criterion.
[fx,fwx] = makeCrit(xCrit);
[fy,fwy] = makeCrit(yCrit); % Convert class probabilities into class scales.
scale = classscale(Wcum,prior); % Define arrayfuns
afx = @(tp,fn,fp,tn) fx([tp fn; fp tn],scale,cost);
afy = @(tp,fn,fp,tn) fy([tp fn; fp tn],scale,cost);
afwx = @(tp,fn,fp,tn) fwx([tp fn; fp tn],scale);
afwy = @(tp,fn,fp,tn) fwy([tp fn; fp tn],scale); % Compute threshold indices
uniqdiv = ~docv && ~doboot && toNearest;
Ndiv = size(Wcum,1) - 1;
if ischar(xVals) && ischar(tVals)
div = (1:Ndiv)'; % Use all thresholds
else
if useTVals % Use user-defined thresholds
[div,tVals] = tdiv(tVals,sScores,uniqdiv);
else % Use user-defined X values
[div,xVals] = xdiv(xVals,afx,Wcum,uniqdiv);
end
end % Compute the actual values for the specified criterion,
% (to be plotted on X axis),
% and associated TP and FP counts.
[X,~,tpX,fpX] = Xvalues(div,Wcum,afx,[]);
% If xVals are supplied by the user and if they do not need to be set to
% nearest found values, use these xVals
if ~uniqdiv && isnumeric(xVals)
X = xVals(:);
end % Compute criterion values associated with these thresholds
% (to be plotted on Y axis)
Y = Yvalues(tpX,fpX,Wcum,afy,[]); % Check if any criteria are NaN's besides those at special 'reject all' and
% 'accept all' thresholds
special = (div==1 | div==Ndiv);
if any(isnan(X(~special)))
error(message('stats:perfcurve:BadXCritValue'));
end
if any(isnan(Y(~special)))
error(message('stats:perfcurve:BadYCritValue'));
end % Get thresholds from indices
if nargout>2
% If tVals are supplied by the user and if they do not need to be set
% to nearest found values, use these tVals
if ~uniqdiv && isnumeric(tVals)
T = tVals(:);
else
T = thresholds(div,sScores,false);
end
end % Find numeric divisions for VA or TA
tValsFixed = [];
xValsFixed = [];
if docv || doboot
if useTVals
if ischar(tVals)
tValsFixed = thresholds(div,sScores,true);
else
tValsFixed = tVals;
end
else
if ischar(xVals)
xValsFixed = X;
else
xValsFixed = xVals;
end
end
end % Compute confidence intervals
ciX = [];
ciY = [];
ciT = [];
if docv || doboot
notifyClassAbsent(true); % Reset notification flag.
if docv % cross-validation
% For CV, compute X, Y and T for supplied folds with weights
[Xsub,wXsub,Ysub,wYsub,Tsub,wTsub] = ...
xyt(xValsFixed,tValsFixed,subscores,Wcumsub,afx,afwx,afy,afwy); % X errors for TA
if useTVals
ciX = cvci(X,Xsub,wXsub,alpha);
end % Score threshold errors for VA
computeT = nargout>2 && ~useTVals;
if computeT
ciT = cvci(T,Tsub,wTsub,alpha);
end % Always need Y errors
ciY = cvci(Y,Ysub,wYsub,alpha);
elseif doboot
% Use bootci to compute confidence intervals. Use weights as
% multinomial probabilities for bootstrap replica generation and
% use observation counts (not observation weights!) to compute
% performance curves on these replicas.
bootfun = @(idx) ...
oneBootXYT(idx,scores(sorted),W>0,xValsFixed,tValsFixed,processNaN,afx,afy);
ci = bootci(nboot,{bootfun (1:size(W,1))'},...
'weights',sum(W,2),'alpha',alpha,'type',boottype,bootarg{:}); % X and Y errors for TA
if useTVals
if length(tValsFixed)>1
ciX = [ci(1,:,1)' ci(2,:,1)'];
ciY = [ci(1,:,2)' ci(2,:,2)'];
else
ciX = ci(:,1)';
ciY = ci(:,2)';
end
% Y errors for VA
else
if length(xValsFixed)>1
ciY = [ci(1,:,2)' ci(2,:,2)'];
else
ciY = ci(:,2)';
end
end % Score threshold errors for VA
computeT = nargout>2 && ~useTVals;
if computeT
if length(xValsFixed)>1
ciT = [ci(1,:,1)' ci(2,:,1)'];
else
ciT = ci(:,1)';
end
end
end
end % Compute area under curve
if nargout>3
% Set range and either 'x' or 't' to specify what range
XorTrange = [];
mode = '';
if ~ischar(xVals)
mode = 'x';
XorTrange = sort([xVals(1) xVals(end)]);
elseif ~ischar(tVals)
mode = 't';
XorTrange = sort([tVals(1) tVals(end)]);
end % Get area
auc = AUC(XorTrange,mode,sScores,Wcum,afx,afy); % Get error
if docv || doboot
if docv
subauc = zeros(1,nsub);
Wtotsub = zeros(1,nsub);
for isub=1:nsub
[subauc(isub),Wtotsub(isub)] = ...
AUC(XorTrange,mode,subscores{isub},Wcumsub{isub},afx,afy);
end
ciauc = cvci(auc,subauc,Wtotsub,alpha);
elseif doboot
bootfun = @(idx) ...
oneBootAUC(idx,scores(sorted),W>0,XorTrange,mode,processNaN,afx,afy);
ciauc = bootci(nboot,{bootfun (1:size(W,1))'},...
'weights',sum(W,2),'alpha',alpha,'type',boottype,bootarg{:});
ciauc = ciauc';
end
auc = [auc ciauc];
end
end % Find optimal operation point for the standard ROC curve
if nargout>4
isroc = (strcmpi(xCrit,'FPR') || strcmpi(xCrit,'fall')) && ...
(strcmpi(yCrit,'TPR') || strcmpi(yCrit,'sens') || strcmpi(yCrit,'reca'));
if isroc
optrocpt = findoptroc(X,Y,Wcum,scale,cost);
else % Not a standard ROC curve.
optrocpt = NaN(1,2);
end
end % Compute criterion values for individual negative classes
if nargout>5
subY = subYvalues(tpX,fpX,div,Wcum,afy);
end % Include confidence intervals if they were computed
if ~isempty(ciX)
X = [X ciX];
end
if ~isempty(ciY)
Y = [Y ciY];
end
if ~isempty(ciT)
T = [T ciT];
end
end function [W,negClassNames] = membership(sLabels,sWeights,posClass,negClass,trueNames)
% Find the positive class. Must have exactly one.
posClass = cellstr(nominal(posClass));
if length(posClass)>1
error(message('stats:perfcurve:TooManyPositiveClasses'));
end
if ~ismember(posClass,trueNames)
error(message('stats:perfcurve:PositiveClassNotFound'));
end % Check negative class labels
if strcmpi(negClass,'all')
negClass = nominal(trueNames);
[~,posClassLoc] = ismember(posClass,cellstr(negClass));
negClass(posClassLoc) = [];
negClass = nominal(negClass);
else
negClass = nominal(negClass);
tf = ismember(cellstr(negClass),trueNames);
if any(~tf)
error(message('stats:perfcurve:NegativeClassNotFound'));
end
tf = ismember(posClass,cellstr(negClass));
if tf
error(message('stats:perfcurve:PositiveAndNegativeClassesOverlap'));
end
end
nNeg = length(negClass); % Names of selected negative classes
negClassNames = categories(negClass)'; % as a row % Check for duplicate entries
if nNeg~=length(negClassNames)
error(message('stats:perfcurve:DuplicateNegativeClasses'));
end % Fill out the membership matrix
% 1st column is for the positive class.
% Columns 2:end are for negative classes.
negClass = cellstr(negClass);
C = false(length(sLabels),1+nNeg);
C(:,1) = ismember(sLabels,posClass);
for i=1:nNeg
C(:,i+1) = ismember(sLabels,negClass(i));
end % Get weighted membership matrix
W = bsxfun(@times,C,sWeights);
end function [Wcum,scores] = makeccum(W,scores,processNaN)
% Discard instances that do not belong to any class
idxNone = ~any(W,2);
W(idxNone,:) = [];
scores(idxNone) = []; % Get rid of NaN's in scores
Wnanrow = zeros(1,size(W,2));
idxNaN = isnan(scores);
if strcmpi(processNaN,'addtofalse')
if ~isempty(idxNaN)
Wnanrow = sum(W(idxNaN,:),1);
end
end
scores(idxNaN) = [];
W(idxNaN,:) = []; % Make a matrix of counts with NaN instances included
Wnan = zeros(size(W,1)+2,size(W,2));
Wnan(1,2:end) = Wnanrow(2:end);% FP (always accepted)
Wnan(2:end-1,:) = W;
Wnan(end,1) = Wnanrow(1);% FN (always rejected) % Compute cumulative counts in each class
Wcum = cumsum(Wnan,1); % Compact Wcum in case of identical scores
idxEq = find( scores(1:end-1) < scores(2:end) + ...
max([eps(scores(1:end-1)) eps(scores(2:end))],[],2) );
Wcum(idxEq+1,:) = [];
scores(idxEq) = [];
end function scale = classscale(Wcum,prior)
scale = zeros(2,1);
Wpos = Wcum(end,1);
Wneg = sum(Wcum(end,2:end),2);
if ischar(prior) && strcmpi(prior,'empirical')
scale = ones(2,1);
end
if ischar(prior) && strcmpi(prior,'uniform')
prior = ones(2,1);
end
if isnumeric(prior)
if any(prior<=0)
error(message('stats:perfcurve:NonPositivePriors'));
end
scale(1) = prior(1)*Wneg;
scale(2) = prior(2)*Wpos;
scale = scale/sum(scale);
end
end function [f,wf] = makeCrit(crit)
% If this is a user-supplied function, just return it
if isa(crit,'function_handle')
f = crit;
wf = @(C,scale) sum(scale.*sum(C,2));
return;
end % Make the function given criterion name
switch lower(crit)
case 'tp'
f = @(C,scale,cost) scale(1)*C(1,1);
wf = @(C,scale) 1;
case 'fn'
f = @(C,scale,cost) scale(1)*C(1,2);
wf = @(C,scale) 1;
case 'fp'
f = @(C,scale,cost) scale(2)*C(2,1);
wf = @(C,scale) 1;
case 'tn'
f = @(C,scale,cost) scale(2)*C(2,2);
wf = @(C,scale) 1;
case 'tp+fp'
f = @(C,scale,cost) sum(scale.*C(:,1),1);
wf = @(C,scale) 1;
case 'rpp'
f = @(C,scale,cost) sum(scale.*C(:,1),1) / sum(scale.*sum(C,2));
wf = @(C,scale) sum(scale.*sum(C,2));
case 'rnp'
f = @(C,scale,cost) sum(scale.*C(:,2),1) / sum(scale.*sum(C,2));
wf = @(C,scale) sum(scale.*sum(C,2));
case 'accu'
f = @(C,scale,cost) ...
(scale(1)*C(1,1)+scale(2)*C(2,2)) / sum(scale.*sum(C,2));
wf = @(C,scale) sum(scale.*sum(C,2));
case {'tpr','sens','reca'}
f = @(C,scale,cost) C(1,1) / sum(C(1,:),2);
wf = @(C,scale) sum(C(1,:),2);
case {'fnr','miss'}
f = @(C,scale,cost) C(1,2) / sum(C(1,:),2);
wf = @(C,scale) sum(C(1,:),2);
case {'fpr','fall'}
f = @(C,scale,cost) C(2,1) / sum(C(2,:),2);
wf = @(C,scale) sum(C(2,:),2);
case {'tnr','spec'}
f = @(C,scale,cost) C(2,2) / sum(C(2,:),2);
wf = @(C,scale) sum(C(2,:),2);
case {'ppv','prec'}
f = @(C,scale,cost) scale(1)*C(1,1) / sum(scale.*C(:,1));
wf = @(C,scale) sum(scale.*C(:,1));
case 'npv'
f = @(C,scale,cost) scale(2)*C(2,2) / sum(scale.*C(:,2));
wf = @(C,scale) sum(scale.*C(:,2));
case 'ecost'
f = @(C,scale,cost) ...
sum(scale.*sum(C.*cost,2)) / sum(scale.*sum(C,2));
wf = @(C,scale) sum(scale.*sum(C,2));
otherwise
error(message('stats:perfcurve:UnknownXYCriterion'));
end
end function inrange = applyrange(X,T,XorTrange,mode)
inrange = true(length(X),1);
if ~isempty(XorTrange)
if numel(XorTrange)~=2
error(message('stats:perfcurve:InvalidXorTRange'));
end
XorTrange = sort(XorTrange);
if mode=='x'
inrange = (X>=XorTrange(1) & X<=XorTrange(2));
elseif mode=='t'
inrange = (T>=XorTrange(1) & T<=XorTrange(2));
end
if isempty(inrange)
error(message('stats:perfcurve:XorTRangeTooRestrictive'));
end
end
end function T = thresholds(div,scores,shiftRejectAll)
% Init
T = zeros(length(div),1); % First threshold
isone = div==1;
T(isone) = scores(1);
if shiftRejectAll
T(isone) = T(isone) + eps(scores(1));
end % Normal thresholds
T(~isone) = scores(div(~isone)-1);
end function increasing = monotone(vals)
% Allow only monotone criteria.
% By default, assume a criterion that monotonously increases as
% the predicted score in the positive class decreases. Otherwise, swap.
% 'increasing' is a flag that shows in what order values are sorted.
vals = vals(~isnan(vals));
increasing = 1;
if isempty(vals)
return;
end
if any(vals(1:end-1)>vals(2:end))
increasing = -1;
if any(vals(1:end-1)<vals(2:end))
error(message('stats:perfcurve:NonMonotoneXCriterion'));
end
end
end %{
% This routine does the same thing as the uncommented one below. It is
% simpler but could be much slower for huge allVals.
function div = finddiv(divVals,allVals,increasing)
Nall = length(allVals);
Nval = length(divVals);
div = ones(Nval,1);
for i=1:Nall
div(increasing*divVals >= increasing*allVals(i)) = i;
end
end
%} % Find allVals indices for values supplied in divVals.
% allVals is a sorted array of all know values, and divVals is a sorted
% array of values for which we want to find indices in allVals.
% increasing is the sort order: +1 for ascending and -1 for descending.
% Assume that divVals is not too large and allVals can be huge.
% This routine works if allVals is a subset of divVals as well (case
% relevant for cross-validation or bootstrap).
function div = finddiv(divVals,allVals,increasing)
% Init
Ndiv = length(divVals);
div = ones(Ndiv,1); % Set current search starting index
iAll = 1; % Main loop
for iDiv=1:Ndiv
% Find index in the list of all known values
thisAll = find(increasing*allVals(iAll:end) <= increasing*divVals(iDiv),1,'last');
if isempty(thisAll)
continue;
end % Update starting index for the list of all known values
iAll = iAll + thisAll - 1; % Fill found divisions
div(iDiv:end) = iAll;
end
end % Find division indices along X for supplied xVals
function [divX,xVals] = xdiv(xVals,afx,Wcum,uniqdiv)
% Get counts for positive and negative classes
Nrow = size(Wcum,1) - 1;
Pcum = Wcum(:,1);
Ncum = sum(Wcum(:,2:end),2);
wP = Pcum(end);
wN = Ncum(end); % Get all possible values of the criterion
allVals = arrayfun(afx,Pcum(1:Nrow),wP-Pcum(1:Nrow),Ncum(1:Nrow),wN-Ncum(1:Nrow)); % Do criterion values increase or decrease vs predicted scores?
increasing = monotone(allVals); % Sort input values
xVals = increasing*sort(increasing*xVals); % Find indices of thresholds.
divX = finddiv(xVals,allVals,increasing); % Make indices unique if necessary
% and include the first threshold below 'accept all'.
if uniqdiv
if increasing*allVals(1)>=increasing*xVals(1)
divX = [1; divX];
end
divX = unique(divX);
end
end % Find division indices along positive class score for supplied thresholds
function [divT,tVals] = tdiv(tVals,scores,uniqdiv)
% Sort thresholds
tVals = sort(tVals,'descend'); % Find indices of thresholds.
% Scores have been sorted in the descending order.
divT = finddiv(tVals,scores,-1); % Offset indices of non-special thresholds by 1 to account for the NaN row
% on top of Ccum.
divT = divT + 1;
divT(tVals>scores(1)) = 1; % Make indices unique if necessary
if uniqdiv
divT = unique(divT);
end
end % Get X values for given division indices
function [valX,wX,tpX,fpX] = Xvalues(div,Wcum,afx,afwx)
% Get counts for positive and negative classes
Pcum = Wcum(:,1);
Ncum = sum(Wcum(:,2:end),2);
wP = Pcum(end);
wN = Ncum(end);
Nrow = size(Pcum,1)-1; % Check that division index does not exceed array size
if any(div>Nrow)
error(message('stats:perfcurve:BadDivisionIndex'));
end % Get TP and FP counts for chosen threshold indices
tpX = Pcum(div);
fpX = Ncum(div); % valX is the corresponding array of criterion values
valX = arrayfun(afx,tpX,wP-tpX,fpX,wN-fpX); % wX is the corresponding array of weights
wX = [];
if ~isempty(afwx)
wX = arrayfun(afwx,tpX,wP-tpX,fpX,wN-fpX);
end
end function [valY,wY] = Yvalues(tpX,fpX,Wcum,afy,afwy)
% Get number of instances in the positive and negative classes
wP = Wcum(end,1);
wN = sum(Wcum(end,2:end),2); % Compute Y criterion for the total of all negative classes
valY = arrayfun(afy,tpX,wP-tpX,fpX,wN-fpX); % Compute corresponding weights
wY = [];
if ~isempty(afwy)
wY = arrayfun(afwy,tpX,wP-tpX,fpX,wN-fpX);
end
end function subY = subYvalues(tpX,fpX,divX,Wcum,afy)
% If only one negative class, it is accounted for by Yvalues
nNegClass = size(Wcum,2)-1;
if nNegClass < 2
subY = Yvalues(tpX,fpX,Wcum,afy,[]);
return;
end % Compute Y criteria for negative classes separately
wP = Wcum(end,1);
subY = zeros(length(tpX),nNegClass);
for i=1:nNegClass
wN = Wcum(end,i+1);
if wN==0
error(message('stats:perfcurve:BadClassCounts', i));
end
fpX = Wcum(divX,i+1);
subY(:,i) = arrayfun(afy,tpX,wP-tpX,fpX,wN-fpX);
end
end % Compute area under curve and associated weight
function [auc,wauc] = AUC(XorTrange,mode,sScores,Wcum,afx,afy)
% If not all thresholds have been found, find all and apply range.
Ndiv = size(Wcum,1)-1;
div = (1:Ndiv)';
[X,~,tpx,fpx] = Xvalues(div,Wcum,afx,[]);
Y = Yvalues(tpx,fpx,Wcum,afy,[]);
T = thresholds(div,sScores,false); % Apply range
inrange = applyrange(X,T,XorTrange,mode);
needTrimFirst = true;
if ~inrange(1)
needTrimFirst = false;
end
needTrimLast = true;
if ~inrange(end)
needTrimLast = false;
end
X = X(inrange);
Y = Y(inrange);
icum = find(inrange,1,'last');
if isempty(icum)
wauc = 0;
else
wauc = sum(Wcum(icum,:),2);
end % If the 1st or last value is NaN, trim the new X and Y
if needTrimLast && (isnan(X(end)) || isnan(Y(end)))
X(end) = [];
Y(end) = [];
end
if needTrimFirst && (isnan(X(1)) || isnan(Y(1)))
X(1) = [];
Y(1) = [];
end % Have enough data?
if length(X)<2
auc = 0;
return;
end % Get area
auc = 0.5*sum( (X(2:end)-X(1:end-1)).*(Y(2:end)+Y(1:end-1)) );
auc = abs(auc);
end function optpt = findoptroc(X,Y,Wcum,scale,cost)
% Get positive and negative counts
wP = scale(1)*Wcum(end,1);
wN = scale(2)*sum(Wcum(end,2:end),2); % Get the optimal slope
m = (cost(2,1)-cost(2,2))/(cost(1,2)-cost(1,1)) * wN/wP; % Find lowest intercept for straight lines drawn through (X,Y)
% using this slope and X axis
[~,idx] = min(X - Y/m); % Get the optimal point
optpt = [X(idx) Y(idx)];
end function [scores,labels,weights,ncv] = preparedata(scores,labels,weights)
ncv = 0; % no cross-validation
if iscell(scores) % Cross-validated scores and labels
% Scores
if ~isvector(scores)
error(message('stats:perfcurve:CVScoresNotVector'));
end
scores = scores(:);
ncv = numel(scores);
if ncv<2
error(message('stats:perfcurve:CVScoresTooShort'));
end
tfisemp = cellfun(@isempty,scores);
tfisnum = cellfun(@isnumeric,scores);
tfisvec = cellfun(@isvector,scores);
if any(tfisemp) || any(~tfisnum) || any(~tfisvec)
error(message('stats:perfcurve:CVScoresWithBadElements'));
end
nels = cellfun(@numel,scores);
for icv=1:ncv
scores{icv} = scores{icv}(:);
end % Labels
if ~iscell(labels)
error(message('stats:perfcurve:CVLabelsNotCell'));
end
if ~isvector(labels)
error(message('stats:perfcurve:CVLabelsNotVector'));
end
if numel(labels)~=ncv
error(message('stats:perfcurve:CVLabelsWithNonmatchingLength'));
end
labels = labels(:);
ltype = cellfun(@class,labels,'UniformOutput',false);
for icv=2:ncv
if ~strcmp(ltype{1},ltype{icv})
error(message('stats:perfcurve:CVLabelsWithDifferentTypes'));
end
end
nell = zeros(ncv,1);
for icv=1:ncv
if strcmp(ltype{icv},'char')
nell(icv) = size(labels{icv},1);
else
labels{icv} = labels{icv}(:);
nell(icv) = numel(labels{icv});
end
end % Weights
if isempty(weights)
weights = cell(ncv,1);
else
if ~iscell(weights)
error(message('stats:perfcurve:CVWeightsNotCell'));
end
if ~isvector(weights)
error(message('stats:perfcurve:CVWeightsNotVector'));
end
if numel(weights)~=ncv
error(message('stats:perfcurve:CVWeightsWithNonmatchingLength'));
end
weights = weights(:);
end
for icv=1:ncv
if isempty(weights{icv})
weights{icv} = ones(nels(icv),1);
else
weights{icv} = weights{icv}(:);
end
end
tfisflo = cellfun(@isfloat,weights);
tfisvec = cellfun(@isvector,weights);
if any(~tfisflo) || any(~tfisvec)
error(message('stats:perfcurve:CVWeightsNotNumeric'));
end
fneg = @(x) any(x<0);
fzer = @(x) all(x==0);
fnan = @(x) all(isnan(x));
tfisneg = cellfun(fneg,weights);
tfiszer = cellfun(fzer,weights);
tfisnan = cellfun(fnan,weights);
if any(tfisneg) || any(tfiszer) || any(tfisnan)
error(message('stats:perfcurve:CVWeightsNegativeOrNaN'));
end
nelw = cellfun(@numel,weights); % Check sizes
if any(nels~=nell) || any(nelw~=nell)
error(message('stats:perfcurve:CVWeightsNotMatchedToScores'));
end % Get rid of observations with zero weights
for icv=1:ncv
iszer = weights{icv}==0;
scores{icv}(iszer) = [];
labels{icv}(iszer,:) = [];
weights{icv}(iszer) = [];
end
else % Plain scores, labels and weights
% Scores
if ~isvector(scores)
error(message('stats:perfcurve:ScoresNotVector'));
end
scores = scores(:);
ns = numel(scores); % Labels
if ~ischar(labels)
if ~isvector(labels)
error(message('stats:perfcurve:LabelsNotVector'));
end
labels = labels(:);
end
nl = size(labels,1);
if ns~=nl
error(message('stats:perfcurve:ScoresAndLabelsDoNotMatch'));
end % Weights
if isempty(weights)
weights = ones(ns,1);
else
if ~isfloat(weights)
error(message('stats:perfcurve:WeightsNotRealNumbers'));
end
if ~isvector(weights)
error(message('stats:perfcurve:WeightsNotVector'));
end
if any(weights<0) || all(weights==0)
error(message('stats:perfcurve:WeightsNegative'));
end
if numel(weights)~=ns
error(message('stats:perfcurve:WeightsNotMatchedToScores'));
end
if any(isnan(weights))
error(message('stats:perfcurve:NaNWeights'));
end
weights = weights(:);
iszer = weights==0;
scores(iszer) = [];
labels(iszer,:) = [];
weights(iszer) = [];
end
end
end % Stack cell arrays of scores used for cross-validation, labels and weights
% into long vectors preserving type. ncvel is a vector storing the number
% of elements in every CV piece.
function [ncvel,scores,labels,weights] = stackcv(scores,labels,weights)
ncvel = cellfun(@numel,scores);
scores = vertcat(scores{:});
weights = vertcat(weights{:});
if ischar(labels{1})
labels = char(labels{:});
else
labels = vertcat(labels{:});
end
end % Compute division indices, and X, Y and T values for either
% cross-validation or bootstrap samples. scores and Wcum are cell arrays
% with Nsub elements, one element per subset. wX and wY are weights
% appropriate for computation of statistics X and Y. For thresholds T,
% always use the total weight of the subset for any threshold.
function [X,wX,Y,wY,T,wT] = xyt(xVals,tVals,scores,Wcum,afx,afwx,afy,afwy)
% Init
if ~isempty(xVals)
M = length(xVals);
else
%elseif ~isempty(tVals)
M = length(tVals);
end
nsub = length(scores);
X = zeros(M,nsub);
Y = zeros(M,nsub);
wX = zeros(M,nsub);
wY = zeros(M,nsub); % Loop through subsets
T = [];
wT = [];
computeT = nargout>4 && ~isempty(xVals);
if computeT
T = zeros(M,nsub);
wT = zeros(M,nsub);
for isub=1:nsub
[X(:,isub),wX(:,isub),Y(:,isub),wY(:,isub),T(:,isub),wT(:,isub)] = ...
xytOneSample(xVals,tVals,scores{isub},Wcum{isub},afx,afwx,afy,afwy);
end
else
for isub=1:nsub
[X(:,isub),wX(:,isub),Y(:,isub),wY(:,isub)] = ...
xytOneSample(xVals,tVals,scores{isub},Wcum{isub},afx,afwx,afy,afwy);
end
end
end % Returns one sample of XYT values with corresponding weights.
% Weights for T averaging are set to the cumulative weight of the sample.
function [X,wX,Y,wY,T,wT] = xytOneSample(xVals,tVals,scores,Wcum,afx,afwx,afy,afwy)
% Notify the user once that the class is missing in one of the folds.
if ~all(sum(Wcum,1)) && notifyClassAbsent()
warning(message('stats:perfcurve:SubSampleWithMissingClasses'));
end % Get divisions
if ~isempty(tVals) % perform threshold averaging
div = tdiv(tVals,scores,false);
else
%elseif ~isempty(xVals) % perform vertical averaging
div = xdiv(xVals,afx,Wcum,false);
end % Get X and Y
[X,wX,tpX,fpX] = Xvalues(div,Wcum,afx,afwx);
[Y,wY] = Yvalues(tpX,fpX,Wcum,afy,afwy); % Get T
T = [];
wT = [];
computeT = nargout>4 && ~isempty(xVals);
if computeT
if ~isempty(xVals)
M = length(xVals);
elseif ~isempty(tVals)
M = length(tVals);
end
T = thresholds(div,scores,false);
wT = repmat(sum(Wcum(end,:),2),M,1);
end
end % Returns CV confidence interval for every row of Xcv.
function ci = cvci(X,Xcv,wXcv,alpha)
ci = [];
ncv = size(Xcv,2);
if ncv>0
e = wstd(X,Xcv,wXcv)/sqrt(ncv);
ea = e*norminv(1-0.5*alpha,0,1);
ci = [X-ea X+ea];
end
end % Returns one bootstrap replica specified by indices idx.
% Weights are not needed here because they are used to generate replicas
% and must be fed into bootci directly.
function out = oneBootXYT(idx,scores,C,xVals,tVals,processNaN,afx,afy)
idx = sort(idx);
[Ccum,subscores] = makeccum(C(idx,:),scores(idx),processNaN);
if isempty(xVals) % TA
[X,~,Y] = xytOneSample(xVals,tVals,subscores,Ccum,afx,[],afy,[]);
out = [X Y];
else
%elseif isempty(tVals) % VA
[~,~,Y,~,T,~] = xytOneSample(xVals,tVals,subscores,Ccum,afx,[],afy,[]);
out = [T Y];
end
end function out = oneBootAUC(idx,scores,C,XorTrange,mode,processNaN,afx,afy)
idx = sort(idx);
[Ccum,subscores] = makeccum(C(idx,:),scores(idx),processNaN);
out = AUC(XorTrange,mode,subscores,Ccum,afx,afy);
end % Compute weighted standard deviation given mean M,
% measurements X and their weights W.
% X and W are NxK matrices for N measurements and K folds.
function E = wstd(M,X,W)
tfnan = isnan(X);
X(tfnan) = 0;
W(tfnan) = 0;
tfzeroW = ~any(W,2);
if any(tfzeroW)
warning(message('stats:perfcurve:CVfoldsWithZeroWeights'));
end
E = zeros(length(M),1);
i = ~tfzeroW;
E(i) = sqrt(sum(W(i,:).*bsxfun(@minus,X(i,:),M(i)).^2,2) ./ sum(W(i,:),2));
end % Notify the user if a class is absent?
function tf = notifyClassAbsent(reset)
persistent notified;
if nargin>0 && reset
tf = true;
notified = false;
else
tf = ~notified;
notified = true;
end
end

  

perfcurve.m的更多相关文章

  1. 如何利用Matlab进行ROC分析

    ROC曲线基本知识: 判断分类器的工作效率需要使用召回率和准确率两个变量. 召回率:Recall,又称"查全率", 准确率:Precision,又称"精度".& ...

  2. MATLAB画ROC曲线,及计算AUC值

    根据决策值和真实标签画ROC曲线,同时计算AUC的值 步骤: 根据决策值和真实标签画ROC曲线,同时计算AUC的值: 计算算法的决策函数值deci 根据决策函数值deci对真实标签y进行降序排序,得到 ...

随机推荐

  1. Git命令使用和配置

    git config --global user.name "your name" git config --global user.email "your email& ...

  2. PKU--3211 Washing Clothes(01背包)

    题目http://poj.org/problem?id=3211 分析:两个人洗衣服,可以同时洗,但是只能同时洗一种颜色. 要时间最短,那么每一种颜色的清洗时间最短. 转换为,两个人洗同一种颜色的衣服 ...

  3. wpf中数据绑定和INotifyPeropertyChanged的理解

    原创:转载请注明出处. 先说数据绑定: XAML代码: <Window x:Class="数据绑定和INotifyPropertyChanged.Window1" Loade ...

  4. CheckBox自定义样式

    效果: xmal代码: <Style x:Key="CheckBoxStyle" TargetType="{x:Type CheckBox}"> & ...

  5. JZOJ5857 【NOIP提高组模拟A组2018.9.8】没有上司的舞会

    题目 Description "那么真的有果尔德施坦因这样一个人?"他问道. "是啊,有这样一个人,他还活着.至于在哪里,我就不知道了." "那么那个 ...

  6. Spring_注解形式的配置

    1.spring配置: 扫描被下面的注解所注解的类, 把这些类直接配置为bean. 例如: @Controller @Service @Repository @Component 这四个注解 Cont ...

  7. jqurey相册放大浏览效果。

    /*图片弹窗与切换*/ function honorLayer(){ var honorArray = honorArr(); var $msk = $('.js-mask'),$layer = $( ...

  8. linux php5.4安装phalcon

    PHP版本5.6以上,安装可参考.https://blog.csdn.net/happysdh/article/details/51450654 在phalcon3.0以后就不支持php5.4了. 要 ...

  9. China Final J - Mr.Panda and TubeMaster

    和一般的管道不同 不能类似“无限之环”或者“弯弯国”的建图,因为这两个题都是某些位置必须有,或者必须没有 但是本题可以有的位置随意,不能限制某个位置要么流2,要么流0,(实际上可能流了1过去) 所以建 ...

  10. Java虚拟机系列(二)---HotSpot虚拟机对象

    都知道Java是一门面向对象的编程语言,在Java程序运行过程中,无时无刻不在创建对象,所以这节来总结一下HotSpot虚拟机中的Java对象. 一.Java虚拟机对象的创建过程. 在语义层面创建一个 ...