神奇的dp优化。

考虑6维状态的dp,分别表示三行高和宽,显然MLE&&TLE。

把高排个序,从大到小往架上放,那么若不是重开一行便对高度没有影响。

然后求出宽度的sum,dp[i][j]表示第一行放了i的宽度,二行放了j的宽度,三行放了sum-i-j宽度的最小的高度值。

先把所有书放在第三行,然后从第二本开始转移,考虑往其他行移的情况。

避免MLE要滚动数组。

注意最后更新答案时保证i>0&&j>0&&sum-i-j>0且dp[i][j]!=INF;

//Twenty
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<queue>
#include<vector>
#include<ctime>
typedef long long LL;
using namespace std;
int n,sum,f[][][],ans=1e9;
struct book {
int hi,ti;
friend bool operator <(const book &A,const book &B) {
return A.hi>B.hi;
}
}bk[];
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d",&bk[i].hi,&bk[i].ti);
sort(bk+,bk+n+);
for(int i=;i<=n;i++) sum+=bk[i].ti;
int o=;
memset(f,/,sizeof(f));
f[][][]=bk[].hi;
for(int i=;i<=n;i++) {
o^=;
for(int j=;j<=sum;j++) {
for(int k=;k<=sum&&j+k<sum;k++) {
f[o][j][k]=min(f[o][j][k],f[o^][j][k]);
if(!j) f[o][j+bk[i].ti][k]=min(f[o][j+bk[i].ti][k],f[o^][j][k]+bk[i].hi);
else f[o][j+bk[i].ti][k]=min(f[o][j+bk[i].ti][k],f[o^][j][k]);
if(!k) f[o][j][k+bk[i].ti]=min(f[o][j][k+bk[i].ti],f[o^][j][k]+bk[i].hi);
else f[o][j][k+bk[i].ti]=min(f[o][j][k+bk[i].ti],f[o^][j][k]);
if(i==n&&j!=&&k!=&&f[o][j][k]!=) {
ans=min(ans,f[o][j][k]*max(max(j,k),sum-j-k));
}
}
}
}
printf("%d\n",ans);
return ;
}

BZOJ 1933 [Shoi2007]Bookcase 书柜的尺寸的更多相关文章

  1. BZOJ 1933 [Shoi2007]Bookcase 书柜的尺寸 ——动态规划

    状态设计的方法很巧妙,六个值 h1,h2,h3,t1,t2,t3,我们发现t1,t2,t3可以通过前缀和优化掉一维. 然后考虑把h留下还是t留下,如果留下h显然t是会发生改变的,一个int存不下. 如 ...

  2. BZOJ1933: [Shoi2007]Bookcase 书柜的尺寸

    传送门 很容易看出来这是一道DP题,那么怎么设置状态就成了这道题的关键.本题有点特殊的地方是有两个维度的状态,而每个维度又有三个部分的参数,如果全部设置出来的话肯定会MLE.首先对书的厚度状态简化. ...

  3. [Shoi2007]Bookcase 书柜的尺寸 dp

    这道dp算是同类型dp中比较难的了,主要难点在于设置状态上: 如果像平时那样设置,必定爆空间没商量: 下面是一种思路: 先把输入进来的数据按h从大到小排序,这样就可以大大减少状态数, 然后设f[i][ ...

  4. 书柜的尺寸(bzoj 1933)

    Description Tom不喜欢那种一字长龙式的大书架,他只想要一个小书柜来存放他的系列工具书.Tom打算把书柜放在桌子的后面,这样需要查书的时候就可以不用起身离开了.显然,这种书柜不能太大,To ...

  5. [SHOI2007] 书柜的尺寸 思维题+Dp+空间优化

    Online Judge:Luogu-P2160 Label:思维题,Dp,空间优化 题面: 题目描述 给\(N\)本书,每本书有高度\(Hi\),厚度\(Ti\).要摆在一个三层的书架上. 书架的宽 ...

  6. 最小投票BZOJ 1934([Shoi2007]Vote 善意的投票-最小割)

    上班之余抽点时间出来写写博文,希望对新接触的朋友有帮助.今天在这里和大家一起学习一下最小投票 1934: [Shoi2007]Vote 好心的投票 Time Limit: 1 Sec Memory L ...

  7. BZOJ 1934: [Shoi2007]Vote 善意的投票 最小割

    1934: [Shoi2007]Vote 善意的投票 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  8. BZOJ 1935: [Shoi2007]Tree 园丁的烦恼( 差分 + 离散化 + 树状数组 )

    假如矩阵范围小一点就可以直接用二维树状数组维护. 这道题,  差分答案, 然后一维排序, 另一维离散化然后树状数组维护就OK了. ----------------------------------- ...

  9. BZOJ 1935: [Shoi2007]Tree 园丁的烦恼 +CDQ分治

    1935: [Shoi2007]Tree 园丁的烦恼 参考与学习:https://www.cnblogs.com/mlystdcall/p/6219421.html 题意 在一个二维平面中有n颗树,有 ...

随机推荐

  1. CSS W3C统一验证工具

    CssStats 是一个在线的 CSS 代码分析工具  网址是: http://www.cssstats.com/ 如果你想要更全面的,这个神奇,你值得拥有: W3C 统一验证工具: http://v ...

  2. thinkphp 模型实例化

    在ThinkPHP中,可以无需进行任何模型定义.只有在需要封装单独的业务逻辑的时候,模型类才是必须被定义的,因此ThinkPHP在模型上有很多的灵活和方便性,让你无需因为表太多而烦恼. 根据不同的模型 ...

  3. clover无缘无故隐藏书签栏原因

    可能是不小心按住了Ctrl+shift+B

  4. C++函数调用原理理解

    空程序: int main() { 00411360  push        ebp       ;压入ebp 00411361  mov         ebp,esp     ;ebp = es ...

  5. http://edu.manew.com/ ,蛮牛教育(很少免费),主要是unty3D和大数据方向。适合扫盲

    http://edu.manew.com/ ,蛮牛教育(很少免费),主要是unty3D和大数据方向.

  6. 从零学React Native之13 持久化存储

    数据持久化就是指应用程序将某些数据存储在手机存储空间中. 借助native存储 这种方式不言而喻,就是把内容传递给native层,通过原生API存储,详见从零学React Native之05混合开发 ...

  7. LightOJ-1234-Harmonic Number-调和级数+欧拉常数 / 直接打表

    In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers ...

  8. day 50 MySQL数据备份与还原(mysqldump)

      MySQL数据备份与还原(mysqldump)   一 mysqldump指令实现数据备份.mysql指令实现数据还原 经常有朋友问我,DBA到底是做什么的,百科上说:数据库管理员(Databas ...

  9. C++头文件记得加#pragma once

    C++头文件记得加#pragma once不然可能会导致重定义类

  10. 【daydayup】weTalk

    先看一下项目效果 这个是我运行的作者的项目的wetalk-server项目,他还有wetalk-client 项目 先放下作者的github项目地址:https://github.com/mangyu ...