吴裕雄--天生自然Numpy库学习笔记:NumPy 线性代数
import numpy.matlib
import numpy as np a = np.array([[1,2],[3,4]])
b = np.array([[11,12],[13,14]])
print(np.dot(a,b))
numpy.vdot() 函数是两个向量的点积。 如果第一个参数是复数,那么它的共轭复数会用于计算。 如果参数是多维数组,它会被展开。
import numpy as np a = np.array([[1,2],[3,4]])
b = np.array([[11,12],[13,14]]) # vdot 将数组展开计算内积
print (np.vdot(a,b))
计算式为:
1*11 + 2*12 + 3*13 + 4*14 = 130
numpy.inner() 函数返回一维数组的向量内积。对于更高的维度,它返回最后一个轴上的和的乘积。
import numpy as np print (np.inner(np.array([1,2,3]),np.array([0,1,0])))
# 等价于 1*0+2*1+3*0
import numpy as np
a = np.array([[1,2], [3,4]]) print ('数组 a:')
print (a)
b = np.array([[11, 12], [13, 14]]) print ('数组 b:')
print (b) print ('内积:')
print (np.inner(a,b))
内积计算式为:
1*11+2*12, 1*13+2*14
3*11+4*12, 3*13+4*14
numpy.matmul 函数返回两个数组的矩阵乘积。 虽然它返回二维数组的正常乘积,但如果任一参数的维数大于2,则将其视为存在于最后两个索引的矩阵的栈,并进行相应广播。
另一方面,如果任一参数是一维数组,则通过在其维度上附加 1 来将其提升为矩阵,并在乘法之后被去除。
对于二维数组,它就是矩阵乘法:
import numpy.matlib
import numpy as np a = [[1,0],[0,1]]
b = [[4,1],[2,2]]
print (np.matmul(a,b))
二维和一维运算:
import numpy.matlib
import numpy as np a = [[1,0],[0,1]]
b = [1,2]
print (np.matmul(a,b))
print (np.matmul(b,a))
维度大于二的数组 :
import numpy.matlib
import numpy as np a = np.arange(8).reshape(2,2,2)
b = np.arange(4).reshape(2,2)
print (np.matmul(a,b))
numpy.linalg.det() 函数计算输入矩阵的行列式。
行列式在线性代数中是非常有用的值。 它从方阵的对角元素计算。 对于 2×2 矩阵,它是左上和右下元素的乘积与其他两个的乘积的差。
换句话说,对于矩阵[[a,b],[c,d]],行列式计算为 ad-bc。 较大的方阵被认为是 2×2 矩阵的组合。
import numpy as np
a = np.array([[1,2], [3,4]]) print (np.linalg.det(a))
import numpy as np b = np.array([[6,1,1], [4, -2, 5], [2,8,7]])
print (b)
print (np.linalg.det(b))
print (6*(-2*7 - 5*8) - 1*(4*7 - 5*2) + 1*(4*8 - -2*2))
numpy.linalg.solve() 函数给出了矩阵形式的线性方程的解。
考虑以下线性方程:
x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27
可以使用矩阵表示为:
numpy.linalg.inv() 函数计算矩阵的乘法逆矩阵。
逆矩阵(inverse matrix):设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。
import numpy as np x = np.array([[1,2],[3,4]])
y = np.linalg.inv(x)
print (x)
print (y)
print (np.dot(x,y))
现在创建一个矩阵A的逆矩阵:
import numpy as np a = np.array([[1,1,1],[0,2,5],[2,5,-1]]) print ('数组 a:')
print (a)
ainv = np.linalg.inv(a) print ('a 的逆:')
print (ainv) print ('矩阵 b:')
b = np.array([[6],[-4],[27]])
print (b) print ('计算:A^(-1)B:')
x = np.linalg.solve(a,b)
print (x)
# 这就是线性方向 x = 5, y = 3, z = -2 的解
结果也可以使用以下函数获取:
x = np.dot(ainv,b)
吴裕雄--天生自然Numpy库学习笔记:NumPy 线性代数的更多相关文章
- 吴裕雄--天生自然C++语言学习笔记:C++ 标准库
C++ 标准库可以分为两部分: 标准函数库: 这个库是由通用的.独立的.不属于任何类的函数组成的.函数库继承自 C 语言. 面向对象类库: 这个库是类及其相关函数的集合. C++ 标准库包含了所有的 ...
- 吴裕雄--天生自然C++语言学习笔记:C++ STL 教程
C++ STL(标准模板库)是一套功能强大的 C++ 模板类,提供了通用的模板类和函数,这些模板类和函数可以实现多种流行和常用的算法和数据结构,如向量.链表.队列.栈. C++ 标准模板库的核心包括以 ...
- 吴裕雄--天生自然C++语言学习笔记:C++ Web 编程
什么是 CGI? 公共网关接口(CGI),是一套标准,定义了信息是如何在 Web 服务器和客户端脚本之间进行交换的. CGI 规范目前是由 NCSA 维护的,NCSA 定义 CGI 如下: 公共网关接 ...
- 吴裕雄--天生自然C++语言学习笔记:C++ 多线程
多线程是多任务处理的一种特殊形式,多任务处理允许让电脑同时运行两个或两个以上的程序.一般情况下,两种类型的多任务处理:基于进程和基于线程. 基于进程的多任务处理是程序的并发执行. 基于线程的多任务处理 ...
- 吴裕雄--天生自然C++语言学习笔记:C++ 信号处理
信号是由操作系统传给进程的中断,会提早终止一个程序.在 UNIX.LINUX.Mac OS X 或 Windows 系统上,可以通过按 Ctrl+C 产生中断. 有些信号不能被程序捕获,但是下表所列信 ...
- 吴裕雄--天生自然C++语言学习笔记:C++ 模板
模板是泛型编程的基础,泛型编程即以一种独立于任何特定类型的方式编写代码. 模板是创建泛型类或函数的蓝图或公式.库容器,比如迭代器和算法,都是泛型编程的例子,它们都使用了模板的概念. 每个容器都有一个单 ...
- 吴裕雄--天生自然C++语言学习笔记:C++ 命名空间
假设这样一种情况,当一个班上有两个名叫 Zara 的学生时,为了明确区分它们,在使用名字之外,不得不使用一些额外的信息,比如他们的家庭住址,或者他们父母的名字等等. 同样的情况也出现在 C++ 应用程 ...
- 吴裕雄--天生自然C++语言学习笔记:C++ 文件和流
如何从文件读取流和向文件写入流.这就需要用到 C++ 中另一个标准库 fstream,它定义了三个新的数据类型: ofstream 该数据类型表示输出文件流,用于创建文件并向文件写入信息. ifstr ...
- 吴裕雄--天生自然C++语言学习笔记:C++ 数据抽象
数据抽象是指,只向外界提供关键信息,并隐藏其后台的实现细节,即只表现必要的信息而不呈现细节. 数据抽象是一种依赖于接口和实现分离的编程(设计)技术. 它们向外界提供了大量用于操作对象数据的公共方法,也 ...
- 吴裕雄--天生自然C++语言学习笔记:C++ 日期 & 时间
C++ 标准库没有提供所谓的日期类型.C++ 继承了 C 语言用于日期和时间操作的结构和函数.为了使用日期和时间相关的函数和结构,需要在 C++ 程序中引用 <ctime> 头文件. 有四 ...
随机推荐
- 调用原生硬件 Api 实现照相机 拍照和相册选择 以及拍照上传
一.Flutter image_picker 实现相机拍照和相册选择 https://pub.dev/packages/image_picker 二.Flutter 上传图片到服务器 ht ...
- 一些关于网页标题的动态js特效
1.当转换页面时,标题改变 <script> document.addEventListener('visibilitychange',function(){ if(document.vi ...
- 使用VS2017开发安卓app(1)环境搭建
本人新手,边学习边写笔记,有错误不足之处,望各位博友指正~ 想要用vs开发安卓app,需要在安装时勾选 Xamarin是一个跨平台开发框架.在这一框架内,开发iOS.Android.Windows P ...
- 每天进步一点点------Allegro PCB命名规则
PCB命名规则-allegro 一.焊盘命名规则 1. 贴片矩形焊盘 命名规则:SMD+长(L)+宽(W)(mil) 举例:SMD90X60 2. 贴片圆焊盘 命名规则:SMDC+焊盘直径(D) ...
- java基础(十)之向上转型/向下转型
向上转型:将子类的对象赋值给父类的引用. 向下转型:将父类的对象赋值给子类的引用. 向上转型 Student a = new Student(); Person zhang = a; 或者 Perso ...
- nmon+python 基于AIX系统数据分析
https://sourceforge.net/projects/pynmongraph/ github :https://github.com/madmaze/pyNmonAnalyzer nmon ...
- python专题知识追寻者对OS的理解
一 前言 OS(operating system)直接对操作系统进行操作的接口,功能真是非常强大:允许知识追寻者简要概括一下整体模块 如果要对文件进行读写可以使用os.open()方法 如果要对文件路 ...
- android底部导航栏实现
第一种用radiobutton实现 https://wizardforcel.gitbooks.io/w3school-android/content/75.html 布局文件,使用radiogrou ...
- 能使Oracle索引失效的七大限制条件
Oracle 索引的目标是避免全表扫描,提高查询效率,但有些时候却适得其反. 例如一张表中有上百万条数据,对某个字段加了索引,但是查询时性能并没有什么提高,这可能是 oracle 索引失效造成的.or ...
- 20200227英语上课笔记 about advantage and disadvantage
Hello and welcome to class! Remember to keep your microphone off when you are not speaking Pronuncia ...