@desription@

一共有 N 只贝壳,编号为 1...N,贝壳 i 的大小为 si。

Flute 每次可以取一段连续的贝壳,并选择 s0。如果这些贝壳中大小为 s0 的贝壳有 t 只,就通过魔法把这些贝壳变成 s0*t^2 只柠檬。

经过任意次魔法取完贝壳,最终 Flute 得到的柠檬数是所有小段柠檬数的总和。问最多能变出多少柠檬。

input

第 1 行:一个整数,表示 N(1 ≤ N ≤ 100,000)。

第 2 .. N + 1 行:每行一个整数,第 i + 1 行表示 si(1 ≤ si ≤10,000)。

output

仅一个整数,表示 Flute 最多能得到的柠檬数。

sample input

5

2

2

5

2

3

sample output

21

sample explain

Flute 先从取下 4 只贝壳,它们的大小为 2, 2, 5, 2。选择 s0 = 2,那么这一段

里有 3 只大小为 s0 的贝壳,通过魔法可以得到 2×3^2 = 18 只柠檬。再从右端取下最后一只贝壳,通过魔法可以得到 1×3^1 = 3 只柠檬。总共可以得到 18 + 3 = 21 只柠檬。没有比这更优的方案了。

@solution@

有这样一个性质:假如你对于区间 [l, r] 选的贝壳大小为 s0,则贝壳 l 与 r 的大小为 s0。

如果区间的左右端点的大小不为 s0,则你可以往内缩端点直到等于为止,此时这个区间的答案不会变化。

这样我们就可以来设计 dp 了。

定义状态 \(dp[i]\) 表示取完 1~i 这些贝壳所能求得的最大柠檬数,再定义 \(f[i]\) 表示 i 前面的,与 i 大小相同的贝壳数量(类前缀和)。

则有状态转移:

\[dp[i] = dp[j-1] + s[i]*(f[i]-f[j]+1)*(f[i]-f[j]+1) (s[i] = s[j]且j \leq i)
\]

长得非常 “斜率优化”,我们拆开括号再仔细来看一看:

\[dp[i] = dp[j-1] + s[i]*(f[i]+1)^2-2*s[i]*f[i]*f[j]+s[i]*f[j]^2
\]

注意 s[i] = s[j]。所以式子还可以变为:

\[dp[i] = (dp[j-1]+s[j]*f[j]^2) + (s[i]*(f[i]+1)^2)-2*s[i]*f[i]*f[j]
\]

然后就可以斜率优化了。其中横坐标 \(x[j] = 2*f[j]\),纵坐标 \(y[j] = dp[j-1]+s[j]*f[j]^2\),斜率 \(k[i]=s[i]*f[i]\)。

我们对于每一个 \(s[i]\) 分别进行斜率优化,斜率 \(s[i]*f[i]\) 是单增的,横坐标 \(2*f[j]\) 也是单增,求最大值即上凸包,对于每一个 \(s[i]\) 都开一个单调栈就 OK 了。

讲一点代码细节:同时维护多个单调栈可以不用 vector 或者 deque 等动态的存储,因为我们已知了所有不同类型的 si 对应的元素个数,所以它的单调栈长度必然不会超过这个值。

我们开一个总的长度为 N 的空间,然后按照元素个数分配栈顶的指针即可。

@accepted code@

#include<queue>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 100000;
const int MAXS = 10000;
ll dp[MAXN + 5], sum[MAXN + 5];
int nxt[MAXN + 5], adj[MAXN + 5], s[MAXN + 5];
ll c(int i) {return (sum[i] + 1)*(sum[i] + 1)*s[i];}
ll k(int i) {return 2LL*s[i]*(sum[i] + 1);}
ll x(int j) {return sum[j];}
ll y(int j) {return dp[j-1] + sum[j]*sum[j]*s[j];}
double slope(int p, int q) {return 1.0*(y(p) - y(q))/(x(p) - x(q));}
int stk[MAXN + 5], tp[MAXS + 5], cnt[MAXS + 5];
int main() {
int N; scanf("%d", &N);
for(int i=1;i<=N;i++) {
scanf("%d", &s[i]);
sum[i] = sum[adj[s[i]]] + 1;
nxt[i] = adj[s[i]];
adj[s[i]] = i;
cnt[s[i]]++;
}
for(int i=1;i<=MAXS;i++)
cnt[i] += cnt[i-1];
for(int i=1;i<=MAXS;i++)
tp[i] = cnt[i-1];
for(int i=1;i<=N;i++) {
while( tp[s[i]] > cnt[s[i]-1] + 1 && slope(stk[tp[s[i]]], i) >= slope(stk[tp[s[i]] - 1], stk[tp[s[i]]]) )
tp[s[i]]--;
stk[++tp[s[i]]] = i;
while( tp[s[i]] > cnt[s[i]-1] + 1 && slope(stk[tp[s[i]] - 1], stk[tp[s[i]]]) <= k(i) )
tp[s[i]]--;
dp[i] = c(i) + y(stk[tp[s[i]]]) - k(i)*x(stk[tp[s[i]]]);
}
printf("%lld\n", dp[N]);
}

@details@

一开始我想的是对于每一个 si 都从头到尾作一遍 dp,这样就只需要一个单调栈了。

后来发现,不同的 si 之间也会相互影响,所以我只能从前往后老老实实维护多个单调栈了……

@bzoj - 4709@ 柠檬的更多相关文章

  1. bzoj 4709 [Jsoi2011]柠檬——单调栈二分处理决策单调性

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4709 题解:https://blog.csdn.net/neither_nor/articl ...

  2. bzoj 4709: [Jsoi2011]柠檬

    Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们从 ...

  3. 【BZOJ 4709】柠檬 斜率优化dp+单调栈

    题意 给$n$个贝壳,可以将贝壳分成若干段,每段选取一个贝壳$s_i$,这一段$s_i$的数目为$num$,可以得到$num^2\times s_i$个柠檬,求最多能得到几个柠檬 可以发现只有在一段中 ...

  4. bzoj 4709 [ Jsoi2011 ] 柠檬 —— 斜率优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4709 课上讲的题,还是参考了博客...:https://www.cnblogs.com/GX ...

  5. 单调性优化DP

    单调性优化DP Tags:动态规划 作业部落链接 一.概述 裸的DP过不了,怎么办? 通常会想到单调性优化 单调队列优化 斜率优化 决策单调性 二.题目 [x] 洛谷 P2120 [ZJOI2007] ...

  6. bzoj 2216 [Poi2011]Lightning Conductor——单调队列+二分处理决策单调性

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2216 那个关于位置的代价是带根号的,所以随着距离的增加而增长变慢:所以靠后的位置一旦比靠前的 ...

  7. 【BZOJ】4709: [Jsoi2011]柠檬

    4709: [Jsoi2011]柠檬 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 779  Solved: 310[Submit][Status][ ...

  8. 4709: [Jsoi2011]柠檬

    4709: [Jsoi2011]柠檬 https://www.lydsy.com/JudgeOnline/problem.php?id=4709 分析: 决策单调性+栈+二分. 首先挖掘性质:每个段选 ...

  9. 1502: [NOI2005]月下柠檬树 - BZOJ

    Description Input 文件的第1行包含一个整数n和一个实数alpha,表示柠檬树的层数和月亮的光线与地面夹角(单位为弧度).第2行包含n+1个实数h0,h1,h2,…,hn,表示树离地的 ...

随机推荐

  1. Apache-Shiro分布式环境配置(与redis集成)(转)

    原文戳我 前段时间项目要用到权限控制的相关模块,经过讨论决定采用Apache下面的Shiro开源框架进行身份校验与权限控制,因项目需部署在集群环境下,所以需要分布式的支持,故配置了Redis作为权限数 ...

  2. win10 ubuntu 双系统启动顺序设置

    之前安装ubuntu的时候就遇到过这个问题, 当时解决了,设置成开始可以选择启动ubuntu系统还是win系统. 但是过了好久后又忘记了,最近win10开了一次安全模式启动后,一开机就是win10,u ...

  3. 关于Ajax提交后无法刷新iframe页面的问题

    原因及解决方法: 要把刷新代码写进ajax的代码块里面,而不是放在后面

  4. 2019阿里云开年Hi购季域名与商标分会场全攻略!

    2019阿里云云上Hi购季活动已经于2月25日正式开启,从已开放的活动页面来看,活动分为三个阶段: 2月25日-3月04日的活动报名阶段.3月04日-3月16日的新购满返+5折抢购阶段.3月16日-3 ...

  5. webpack学习之——Entry Points(入口起点)

    1.Entry property(entry属性) 1.1 Single Entry (Shorthand) Syntax(单个入口语法) 用法:entry: string | Array<st ...

  6. Codeforces 455C

    题目链接 C. Civilization time limit per test 1 second memory limit per test 256 megabytes input standard ...

  7. c#通过app.manifest使程序以管理员身份运行

    通常我们使用c#编写的程序不会弹出这个提示,也就无法以管理员身分运行.微软的操作系统使用微软的产品方法当然是有的,通过app.manifest配置可以使程序打开的时候,弹出UAC提示需要得到允许才可以 ...

  8. SDUT-3379_数据结构实验之查找七:线性之哈希表

    数据结构实验之查找七:线性之哈希表 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 根据给定的一系列整数关键字和素数p, ...

  9. CMake学习笔记五-依赖库添加

    # # 项目名称 # SET(WIS_PROJECT_NAME EXAMPLE) # dependencies SET(DEPENDENCIES #依赖第三方库 ) #Qt模块 SET(QT_MODU ...

  10. Spring → 02:开发初步

    一.搭建开发环境 1.1.IDE的安装和配置 1.2.开发包的准备及开发包介绍 二.Hello World 2.1.Bean的编码 2.2.Spring配置文件编写 2.3.测试与运行 三.Sprin ...