3173: [Tjoi2013]最长上升子序列

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1524  Solved: 797
[Submit][Status][Discuss]

Description

给定一个序列,初始为空。现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置。每插入一个数字,我们都想知道此时最长上升子序列长度是多少?

Input

第一行一个整数N,表示我们要将1到N插入序列中,接下是N个数字,第k个数字Xk,表示我们将k插入到位置Xk(0<=Xk<=k-1,1<=k<=N)

Output

N行,第i行表示i插入Xi位置后序列的最长上升子序列的长度是多少。

Sample Input

3
0 0 2

Sample Output

1
1
2

HINT

100%的数据 n<=100000

Source

 

[Submit][Status][Discuss]

分析

本来是想找Treap的练手题,考完NOIP放松一下心情的,结果看完题发现根本不用Treap……

首先,因为加入的元素是越来越大的,所以每次加入之后对于后面的元素的LIS的DP值(即以其结尾的最长上升子序列长度)不会改变,而前面的更不会改变。也就是说,最终序列的DP数组就是逐步加入的DP值了。所以只需要想方设法求出最终序列,再做一遍O(NlogN)的LIS问题即可。

求解最终的序列方法多种多样,可以用Treap暴力维护插入操作,也可以逆着推出最终的序列,我选择了后者。

对于第N个插入的元素,其插入的位置就是最终的位置。当它找到了最终位置之后,就把那个位置改为空。类似的,每个元素的最终位置,就是此时的第Xk个非空位置。这个操作用线段树维护即可轻松做到O(logN),当然也可以树状数组+二分做到O(log^2N),常数小也许跑得反而更快,(lll¬ω¬)。

代码

 #include <bits/stdc++.h>

 using namespace std;

 #define low lower_bound
#define upp upper_bound const int N = ;
const int inf = 0x3f3f3f3f; int n;
int pos[N];
int num[N];
int ans[N];
int stk[N]; struct node
{
int lt, rt, sum; node (void) :
lt (), rt (), sum () {};
}; node tree[N << ]; void build (int p, int l, int r)
{
node &t = tree[p]; t.lt = l;
t.rt = r; t.sum = r - l + ; if (l != r)
{
int mid = (l + r) >> ; build (p << , l, mid);
build (p << | , mid + , r);
}
} void change (int p, int pos, int val)
{
node &t = tree[p]; if (t.lt != t.rt)
{
int mid = (t.lt + t.rt) >> ; if (pos <= mid)
change (p << , pos, val);
else
change (p << | , pos, val); t.sum = tree[p << ].sum + tree[p << | ].sum;
}
else
t.sum = val;
} int query (int p, int val)
{
node &t = tree[p]; if (t.lt != t.rt)
{
int tmp = tree[p << ].sum; if (val <= tmp)
return query (p << , val);
else
return query (p << | , val - tmp);
}
else
return t.lt;
} signed main (void)
{
scanf ("%d", &n); for (int i = ; i <= n; ++i)
scanf ("%d", pos + i); build (, , n); for (int i = n; i >= ; --i)
{
int t = query (, pos[i] + );
num[t] = i, change (, t, );
} memset (stk, inf, sizeof(stk)); for (int i = ; i <= n; ++i)
{
*low (stk, stk + i, num[i]) = num[i];
ans[num[i]] = low (stk, stk + i, num[i]) - stk;
} for (int i = ; i <= n; ++i)
ans[i] = max (ans[i], ans[i - ]); for (int i = ; i <= n; ++i)
printf ("%d\n", ans[i] + );
}

BZOJ_3173.cpp

后记:

大概是刚考完NOIP,又要准备学考,大家的刷题兴致不高啊,居然被我轻松拿了Day榜,(*^_^*)/。

No. User Nick Name AC Submit Ratio
1 YOUSIKI ねえ、あなたは知っていますか、桜の行方の速度は秒速5センチメートル 5 6 83.333%

@Author: YouSiki

BZOJ 3173: [Tjoi2013]最长上升子序列的更多相关文章

  1. Bzoj 3173: [Tjoi2013]最长上升子序列 平衡树,Treap,二分,树的序遍历

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1183  Solved: 610[Submit][St ...

  2. BZOJ 3173: [Tjoi2013]最长上升子序列( BST + LIS )

    因为是从1~n插入的, 慢插入的对之前的没有影响, 所以我们可以用平衡树维护, 弄出最后的序列然后跑LIS就OK了 O(nlogn) --------------------------------- ...

  3. BZOJ 3173: [Tjoi2013]最长上升子序列 [splay DP]

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1613  Solved: 839[Submit][St ...

  4. bzoj 3173 [Tjoi2013]最长上升子序列 (treap模拟+lis)

    [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2213  Solved: 1119[Submit][Status] ...

  5. BZOJ 3173 [Tjoi2013] 最长上升子序列 解题报告

    这个题感觉比较简单,但却比较容易想残.. 我不会用树状数组求这个原排列,于是我只好用线段树...毕竟 Gromah 果弱马. 我们可以直接依次求出原排列的元素,每次找到最小并且最靠右的那个元素,假设这 ...

  6. BZOJ 3173: [Tjoi2013]最长上升子序列 (线段树+BIT)

    先用线段树预处理出每个数最终的位置.然后用BIT维护最长上升子序列就行了. 用线段树O(nlogn)O(nlogn)O(nlogn)预处理就直接倒着做,每次删去对应位置的数.具体看代码 CODE #i ...

  7. bzoj 3173: [Tjoi2013]最长上升子序列【dp+线段树】

    我也不知道为什么把题看成以插入点为结尾的最长生生子序列--还WA了好几次 先把这个序列最后的样子求出来,具体就是倒着做,用线段树维护点数,最开始所有点都是1,然后线段树上二分找到当前数的位置,把这个点 ...

  8. BZOJ 3173: [Tjoi2013]最长上升子序列 Splay

    一眼切~ 重点是按照 $1$~$n$ 的顺序插入每一个数,这样的话就简单了. #include <cstdio> #include <algorithm> #define N ...

  9. 3173: [Tjoi2013]最长上升子序列

    原题:http://www.lydsy.com/JudgeOnline/problem.php?id=3173 题解:促使我写这题的动力是,为什么百度遍地是Treap,黑人问号??? 这题可以用线段树 ...

随机推荐

  1. 在ASP.NET中如何运行后台任务

    from:https://blogs.msdn.microsoft.com/scott_hanselman/2014/12/21/asp-net/ [原文发表地址] How to run Backgr ...

  2. 移动开发webapp开发常用meta设置手机浏览器全屏模式

    1.WebApp全屏模式: <meta name="viewport" content="width=device-width,initial-scale=1.0, ...

  3. C语言--指向多维数组的指针和指针数组

    #include <stdio.h> //void show(char *p[]); ]); int main(){ ][]={","abc","x ...

  4. font和lineheight冲突。

    font:14px bold arial; line-height:40px; 这样写font的话line-height不会有效,只要把font拆分写就有效,chrome ie ff下都是.

  5. node基础02:第一个node程序

    1.第一个web服务器 var http = require("http"); http.createServer(function(request, response){ res ...

  6. 基于ASP.NET MVC的热插拔模块式开发框架(OrchardNoCMS)--瘦身计划

    Orchard CMS是针对CMS开发的,对于很多开发需求来说,内容管理这块儿可能并不需要,而需要它的模块式开发模式.所以我这里通过对OrchardCMS进行瘦身,去除 内容管理部分的内容,保留简单的 ...

  7. 前端见微知著JavaScript基础篇:你所不知道的apply, call 和 bind

    在我的职业生涯中,很早就已经开始使用JavaScript进行项目开发了.但是一直都是把重心放在了后端开发方面,前端方面鲜有涉及.所以造成的一个现象就是:目前的前端知识水平,应付一般的项目已然是足够的, ...

  8. 几种任务调度的 Java 实现方法与比较

    综观目前的 Web 应用,多数应用都具备任务调度的功能.本文由浅入深介绍了几种任务调度的 Java 实现方法,包括 Timer,Scheduler, Quartz 以及 JCron Tab,并对其优缺 ...

  9. WPF路径动画(动态逆向动画)

    WPF 中的Path.Data 不再多介绍,M开始坐标点 C弧度坐标点 L 直线坐标点 <Path x:Name="path0" Data="M 10,100 C ...

  10. WPF 让子元素动起来!

    在没有接触Blend之前,自己整出了一个MultiTouchHelper,这东西是做什么的呢?就是利用附加属性让元素可以多点触控. 然后某一天发现Blend里面有一个Behavior的东西,我去,原来 ...