Given two Binary Search Trees, find common nodes in them. In other words, find intersection of two BSTs.

Example:

from: http://www.geeksforgeeks.org/print-common-nodes-in-two-binary-search-trees/

Method 1 (Simple Solution) A simple way is to one by once search every node of first tree in second tree. Time complexity of this solution is O(m * h) where m is number of nodes in first tree and h is height of second tree.

Method 2 (Linear Time) We can find common elements in O(n) time.
1) Do inorder traversal of first tree and store the traversal in an auxiliary array ar1[]. 
2) Do inorder traversal of second tree and store the traversal in an auxiliary array ar2[]
3) Find intersection of ar1[] and ar2[]. See this for details.

Time complexity of this method is O(m+n) where m and n are number of nodes in first and second tree respectively. This solution requires O(m+n) extra space.

Method 3 (Linear Time and limited Extra Space) We can find common elements in O(n) time and O(h1 + h2) extra space where h1 and h2 are heights of first and second BSTs respectively.
The idea is to use iterative inorder traversal. We use two auxiliary stacks for two BSTs. Since we need to find common elements, whenever we get same element, we print it.

 public List<Integer> commonNodes(TreeNode root1, TreeNode root2) {
List<Integer> list = new ArrayList<Integer>(); Stack<TreeNode> stack1 = new Stack<TreeNode>();
Stack<TreeNode> stack2 = new Stack<TreeNode>(); while (root1 != null) {
stack1.push(root1);
root1 = root1.left;
} while (root2 != null) {
stack2.push(root2);
root2 = root2.left;
} while (stack1.size() > && stack2.size() > ) {
TreeNode node1 = stack1.peek();
TreeNode node2 = stack2.peek(); if (node1.val == node2.val) {
list.add(node1.val);
node1 = stack1.pop().right;
node2 = stack2.pop().right; while (node1 != null) {
stack1.push(node1);
node1 = node1.left;
} while (node2 != null) {
stack2.push(node2);
node2 = node2.left;
}
} else if (node1.val < node2.val) {
node1 = stack1.pop().right; while (node1 != null) {
stack1.push(node1);
node1 = node1.left;
}
} else {
node2 = stack2.pop().right;
while (node2 != null) {
stack2.push(node2);
node2 = node2.left;
}
}
}
return list;
}

Print Common Nodes in Two Binary Search Trees的更多相关文章

  1. [LeetCode] Lowest Common Ancestor of a Binary Search Tree 二叉搜索树的最小共同父节点

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  2. Method for balancing binary search trees

    Method for balancing a binary search tree. A computer implemented method for balancing a binary sear ...

  3. [LeetCode] 235. Lowest Common Ancestor of a Binary Search Tree 二叉搜索树的最小共同父节点

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  4. Optimal binary search trees

    问题 该问题的实际应用 Suppose that we are designing a program to translate text from English to French. For ea ...

  5. LEETCODE —— Unique Binary Search Trees [动态规划]

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  6. LeetCode-96. Unique Binary Search Trees

    Description: Given n, how many structurally unique BST's (binary search trees) that store values 1.. ...

  7. Unique Binary Search Trees I & II

    Given n, how many structurally unique BSTs (binary search trees) that store values 1...n? Example Gi ...

  8. [geeksforgeeks] Lowest Common Ancestor in a Binary Search Tree.

    http://www.geeksforgeeks.org/lowest-common-ancestor-in-a-binary-search-tree/ Lowest Common Ancestor ...

  9. leetcode面试准备:Lowest Common Ancestor of a Binary Search Tree & Binary Tree

    leetcode面试准备:Lowest Common Ancestor of a Binary Search Tree & Binary Tree 1 题目 Binary Search Tre ...

随机推荐

  1. java中的各个数据结构区别

    ArrayList 和Vector是采用数组方式存储数据,此数组元素数大于实际存储的数据以便增加和插入元素,都允许直接序号索引元素,但是插入数据要设计到数组元素移动等内存操作,所以索引数据快插入数据慢 ...

  2. Java %c0%ae 安全模式绕过漏洞

    漏洞类型:安全模式绕过漏洞 漏洞描述:在Java端"%c0%ae"解析为"\uC0AE",最后转义为ASCCII低字符-".".通过这个方法 ...

  3. 使用hessian开发WebService,轻量级,更简单、快捷

    Hessian是一个轻量级的remoting onhttp工具,使用简单的方法提供了RMI的功能. 相比WebService,Hessian更简单.快捷.采用的是二进制RPC协议,因为采用的是二进制协 ...

  4. MySql避免重复插入记录

    今天用python抓取数据入库需要避免重复数据插入,在网上找了一些方法: 方案一:使用ignore关键字 如果是用主键primary或者唯一索引unique区分了记录的唯一性,避免重复插入记录可以使用 ...

  5. TP框架整合Swagger UI接口文档

    1.下载swagger ui:http://swagger.io/swagger-ui/: 2.在应用目录里新建一个目录xxx:如图 3.解压后把dist目录的所有文件拷贝到新建的目录里面: 4.在新 ...

  6. JavaScript实现联想校招员工信息展示

    原文摘自我的前端博客,欢迎大家来访问 http://www.hacke2.cn 起因 今天和豪哥聊天,才知道他是我老乡,而且特别近..真的感觉他是我的贵人,这是他从 联想校招扣出来的,我们就用Java ...

  7. CSS3:flex布局应用

    想把先前的整理的东西贴出来,怎奈总是有额外事情发生,额,教训电脑要离水杯远点~~ 推荐一本书,<编写可维护的Javascript>这是Nicbolas C.Zakas写的,他的<Ja ...

  8. 2015年12月10日 spring初级知识讲解(二)最小化Spring XML配置 注解

    序,随着Spring容器管理Bean数量增加,XML文件会越来越大,而且纯手工配置XML很繁琐,Spring和JAVA都提供了一些注解方式用以简化XML配置. 目录 一.自动装配(autowiring ...

  9. findByExample(Object exampleEntity)方法得到的List判断是否为空,不可用(lis != null)

    用findByExample(Object exampleEntity)方法可以应用在用户登录上面,获得有登陆名和密码的user对象进行查询. 返回两者都符合的对象列表,为空则登陆失败. 错误的方法: ...

  10. C\C++ sizeof 陷阱&&总结

    今天使用动态数组,本来想通过sizeof 获取动态数据,结果出现了错误. 先对自己做个测试,能做出下面这个题目,并做出合理解释,可以不用往下看了. ][]; cout<< cout< ...