“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第4章课程讲义下载(PDF)

Summary

  • Transpose
    Let $[A]$ be a $m\times n$ matrix. Then $[B]$ is the transpose of $[A]$ if $b_{ji} = a_{ij}$ for all $i$ and $j$. That is, the $i$-th row and the $j$-th column element of $[A]$ is the $j$-th row and $i$-th column element of $[B]$. Note that $[B]$ is a $n\times m$ matrix and is denoted by $[B] = [A]^{T}$. For example, $$[A] = \begin{bmatrix}1& 2& 3\\ 4& 5& 6\end{bmatrix}\Rightarrow [A]^{T} = \begin{bmatrix}1& 4\\ 2& 5\\ 3& 6\end{bmatrix}$$
  • Symmetric matrix
    A square matrix $[A]$ with real elements where $a_{ij} = a_{ji}$ for $i = 1, \cdots, n$ and $j = 1, \cdots, n$ is called a symmetric matrix. That is, $[A]$ is a symmetric matrix if $[A] = [A]^{T}$. For example, $$[A] = \begin{bmatrix}1& 2& 3\\ 2& 4& 5\\ 3& 5& 7\end{bmatrix}$$
  • Skew-symmetric matrix
    A $n\times n$ matrix is skew-symmetric if $a_{ij} = -a_{ji}$ for $i = 1, \cdots, n$ and $j = 1, \cdots, n$. That is, $[A]$ is a skew-symmetric matrix if $[A] = -[A]^{T}$. Note that the diagonal elements must be zero in a skew-symmetric matrix. For example, $$[A] = \begin{bmatrix}0& 2& 3\\ -2& 0& 5\\ -3& -5& 0\end{bmatrix}$$
  • Trace of matrix
    The trace of a $n\times n$ matrix $[A]$ is the sum of the diagonal entries of $[A]$, that is, $$\text{tr}[A] = \sum_{i=1}^{n}a_{ii}$$ For example, $$[A] = \begin{bmatrix}1& 2& 3\\ 2& 4& 5\\ 3& 5& 7\end{bmatrix}\Rightarrow \text{tr}[A] = 1 + 4 +7=12$$
  • Determinant
    Let $[A]$ be a $n\times n$ matrix.

    • The minor of entry $a_{ij}$ is denoted by $M_{ij}$ and is defined as the determinant of the $(n-1)\times(n-1)$ sub-matrix of $[A]$, where the sub-matrix is obtained by deleting the $i$-th row and $j$-th column of the matrix $[A]$. The determinant is then given by $$\det(A) = \sum_{j=1}^{n}(-1)^{i+j}a_{ij}M_{ij},\ \text{for any}\ i=1, 2, \cdots, n$$ or $$\det(A) = \sum_{i=1}^{n}(-1)^{i+j}a_{ij}M_{ij},\ \text{for any}\ j=1, 2, \cdots, n$$ For example, $$[A] = \begin{bmatrix}1& 2& 3\\ 2& 4& 5\\ 3& 5& 7\end{bmatrix}$$ $$\Rightarrow \det(A) =(-1)^{1+1}\cdot1\cdot\begin{vmatrix}4& 5 \\ 5& 7\end{vmatrix} + (-1)^{1+2}\cdot2\cdot\begin{vmatrix}2& 5 \\ 3& 7\end{vmatrix} + (-1)^{1+3}\cdot3\cdot\begin{vmatrix}2& 4 \\ 3& 5\end{vmatrix}$$ $$=(4\times7-5\times5) -2\times(2\times7-3\times5) + 3\times(2\times5 - 3\times4) = -1$$ Note that for a $2\times2$ matrix $[A] = \begin{bmatrix}a& b\\ c& d\end{bmatrix}$, $\det(A) = ad-bc$.
    • The number $(-1)^{i+j}M_{ij}$ is called the cofactor of $a_{ij}$ and is denoted by $C_{ij}$. The formula for the determinant can then be written as $$\det(A) = \sum_{j=1}^{n}a_{ij}C_{ij},\ \text{for any}\ i=1, 2, \cdots, n$$ or $$\det(A) = \sum_{i=1}^{n}a_{ij}C_{ij},\ \text{for any}\ j=1, 2, \cdots, n$$
    • If $[A]$ and $[B]$ are square matrices of same size, then $$\det(A\cdot B) = \det(A)\cdot\det(B)$$
    • $\det(A) = 0$ if
      • A row or a column is zero, or
      • A row (column) is proportional to another row (column).
    • If a row (column) is multiplied by $k$ to result in matrix $[B]$, then $$\det(B) = k\cdot\det(A)$$
    • If $[B] = k\cdot[A]$, then $$\det(B)=k^{n}\det(A)$$
    • If $[A]$ is a $n\times n$ upper or lower triangular matrix, then $$\det(A) = \prod_{i=1}^{n}a_{ii}$$
    • If $[B]$ is row-equivalent to $[A]$, then $$\begin{cases} R_i\leftrightarrow R_j: & \det(B) = -\det(A);\\ tR_i: & \det(B) = t\det(A);\\ R_i\rightarrow R_i+tR_j: &\det(B) = \det(A).\end{cases}$$

Selected Problems

1. Let $$[A] = \begin{bmatrix}25& 3& 6\\ 7& 9& 2\end{bmatrix}$$ Find $[A]^{T}$.

Solution:

$$[A]^{T} = \begin{bmatrix}25& 7\\ 3& 9\\ 6& 2\end{bmatrix}$$

2. If $[A]$ and $[B]$ are two $n\times n$ symmetric matrices, show that $[A]+[B]$ is also symmetric.

Solution:

Let $[C]=[A]+[B]$, so we have $$c_{ij} = a_{ij} + b_{ij} = a_{ji} + b_{ji} =c_{ji}$$ that is, $[C]=[C]^{T}$.

3. What is the trace of $$[A] = \begin{bmatrix}7& 2& 3& 4\\ -5& -5& -5& -5\\ 6& 6& 7& 9\\ -5& 2& 3& 10\end{bmatrix}$$

Solution:

$$\text{tr}[A] = 7-5+7+10=19$$

4. Find the determinant of $$[A] = \begin{bmatrix}10& -7& 0\\ -3& 2.099& 6\\ 5& -1& 5\end{bmatrix}$$

Solution:

$$\det(A)=(-1)^{1+1}\times10\times\begin{vmatrix}2.099& 6\\ -1& 5\end{vmatrix} + (-1)^{1+2}\times(-7)\times\begin{vmatrix}-3& 6\\ 5& 5\end{vmatrix}$$ $$=10\times(2.099\times5+1\times6) + 7\times(-15-30) = -150.05$$

5. What is the value of a $n\times n$ matrix $\det(3[A])$?

Solution:

$$\det(3[A]) = 3^n\det(A)$$

6. For a $5\times5$ matrix $[A]$, the first row is interchanged with the fifth row, what is the determinant of the resulting matrix $[B]$?

Solution:

The sign would be changed if interchaged two row (column). Thus $$\det(B) = -\det(A)$$

7. What is the determinant of $$[A] = \begin{bmatrix}0& 1& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ 1& 0& 0& 0\end{bmatrix}$$

Solution:

$$[A] = \begin{bmatrix}0& 1& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ 1& 0& 0& 0\end{bmatrix}\Rightarrow R_1\leftrightarrow R_4 \begin{bmatrix}1& 0& 0& 0\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ 0& 1& 0& 0\end{bmatrix}$$ $$\Rightarrow R_2\leftrightarrow R_3 \begin{bmatrix}1& 0& 0& 0\\ 0& 0& 0& 1\\ 0& 0& 1& 0\\0& 1& 0& 0\end{bmatrix}$$ $$\Rightarrow R_2\leftrightarrow R_4 \begin{bmatrix}1& 0& 0& 0\\0& 1& 0& 0\\ 0& 0& 1& 0\\0& 0& 0& 1\end{bmatrix}=[B]$$ Thus $\det(A) = (-1)^{3}\det(B)=-1$.

8. Find the determinant of $$[A]=\begin{bmatrix}0& 0& 0\\ 2& 3& 5\\ 6& 9& 2\end{bmatrix}$$

Solution:

$\det(A)=0$ since the first row is zero.

9. Find the determinant of $$[A]=\begin{bmatrix}0& 0& 2& 3\\ 0& 2& 3& 5\\ 6& 7& 2& 3\\ 6.6& 7.7& 2.2& 3.3\end{bmatrix}$$

Solution:

Since $R_4 = 1.1R_3$, so $\det(A) = 0$.

10. Find the determinant of $$[A]=\begin{bmatrix}5& 0& 0& 0\\ 0& 3& 0& 0\\ 2& 5& 6& 0\\ 1& 2& 3& 9\end{bmatrix}$$

Solution:

This is a lower triangular matrix and hence $$\det(A) = 5\times3\times6\times9=810$$

11. Given the matrix $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}$$ and $\det(A) = -32400$. Find the determinant of $$[A_1]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1141& 81& 9& -1\\ 8& 4& 2& 1\end{bmatrix};$$ $$[A_2]=\begin{bmatrix}125& 25& 1& 5\\ 512& 64& 1& 8\\ 1157& 89& 1& 13\\ 8& 4& 1& 2\end{bmatrix};$$ $$[A_3] = \begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 512& 64& 8& 1\\8& 4& 2& 1\end{bmatrix};$$ $$[A_4] = \begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\\ 512& 64& 8& 1\end{bmatrix};$$ $$[A_5] = \begin{bmatrix} 125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 16& 8& 4& 2 \end{bmatrix}.$$

Solution:

$$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow R_3-2R_4 \begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1141& 81& 9& -1\\ 8& 4& 2& 1\end{bmatrix}=[A_1]$$ Thus $\det(A_1) = \det(A) =-32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow C_3\leftrightarrow C_4 \begin{bmatrix}125& 25& 1& 5\\ 512& 64& 1& 8\\ 1157& 89& 1& 13\\ 8& 4& 1& 2\end{bmatrix} = [A_2]$$ Thus $\det(A_2)=-\det(A)=32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow R_2\leftrightarrow R_3\begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 512& 64& 8& 1\\8& 4& 2& 1\end{bmatrix}= [A_3]$$ Thus $\det(A_3) = -\det(A) = 32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix}\Rightarrow \begin{cases} R_2\leftrightarrow R_3\\ R'_3\leftrightarrow R_4\end{cases} \begin{bmatrix} 125& 25& 5& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\\ 512& 64& 8& 1\end{bmatrix} = [A_4]$$ Thus $\det(A_4) = (-1)^2\det(A) = -32400$. $$[A]=\begin{bmatrix}125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 8& 4& 2& 1\end{bmatrix} \Rightarrow 2R_4\begin{bmatrix} 125& 25& 5& 1\\ 512& 64& 8& 1\\ 1157& 89& 13& 1\\ 16& 8& 4& 2 \end{bmatrix} = [A_5]$$ Thus $\det(A_5) = 2\det(A) = -64800$.

12. Find the determinant of $$[A] = \begin{bmatrix}25& 5& 1\\ 64& 8& 1\\ 144& 12& 5\end{bmatrix}$$

Solution:

$$\det(A) = (-1)^{1+3}a_{13}M_{13}+(-1)^{2+3}a_{23}M_{23} + (-1)^{3+3}a_{33}M_{33}$$ $$ = \begin{vmatrix}64& 8\\ 144& 12\end{vmatrix} - \begin{vmatrix}25& 5\\ 144& 12\end{vmatrix} + 5\times \begin{vmatrix}25& 5\\ 64& 8\end{vmatrix} = -564$$

13. Show that if $[A][B]=[I]$, where $[A]$, $[B]$ and $[I]$ are matrices of $n\times n$ size and $[I]$ is an identity matrix, then $\det(A)\neq0$ and $\det(B)\neq0$.

Solution:
$$\det(A)\det(B)=\det(AB) =\det(I) = 1$$ $$\Rightarrow \det(A)\neq0,\ \det(B)\neq0.$$

14. If the determinant of a $4\times4$ matrix $[A]$ is given as 20, then what is the determinant of $5[A]$?

Solution:

$$\det(k[A])=k^n\det(A)$$ $$\Rightarrow \det(5[A]) = 5^4\det(A) = 625\times20=12500$$

15. If the matrix product $[A][B][B]$ is defined, what is $([A][B][C])^{T}$?

Solution:

$$([A][B])^{T}=[B]^{T}[A]^{T}$$
$$\Rightarrow ([A][B][C])^{T}=[C]^{T}([A][B])^{T}=[C]^{T}[B]^{T}[A]^{T}$$

16. The determinant of the matrix $$[A] = \begin{bmatrix}25& 5& 1\\ 0& 3& 8\\ 0& 9& a\end{bmatrix}$$ is 50. What is the value of $a$?

Solution:

$$\det(A) = 25\times\begin{vmatrix}3& 8\\ 9& a\end{vmatrix} = 25\times(3a-72)=50$$ $$\Rightarrow a={74\over3}$$

17. $[A]$ is a $5\times 5$ matrix and a matrix $[B]$ is obtained by the row operations of replacing Row1 with Row3, and then Row3 is replaced by a linear combination of $2\times$Row3$+4\times$Row2. If $\det(A)=17$, then what is the value of $\det(B)$?

Solution:

The process is $$[A]\Rightarrow R_1\leftrightarrow R_3 \Rightarrow 2R_3\Rightarrow R_3+4R_2\Rightarrow [B]$$ Thus $$\det(B) = (-1)\times2\cdot\det(A) = -34$$

A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 2. Vectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 1. Introduction

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. git的安装以及遇到的问题

    git安装以及遇到的问题 之前没有学会如何在Ubuntu下使用git,国庆放假回来后,完成了git的安装,补回来了之前没有学会的东西. 以下是我安装的过程以及遇到问题.解决问题的过程. 这次安装git ...

  2. 每一个C#开发者必须知道的13件事情

    1.开发流程 程序的Bug与瑕疵往往出现于开发流程当中.只要对工具善加利用,就有助于在你发布程序之前便将问题发现,或避开这些问题. 标准化代码书写 标准化代码书写可以使代码更加易于维护,尤其是在代码由 ...

  3. 数据库MongoDB查询语句--持续更新

    模糊查询: 包含字符串str : find({'name':/str/i}); {'name':/str/} 以str开头:   {'name':/^str/} $in查询: 字段:{ field: ...

  4. Change Eclipse Tooltip's Color in Ubuntu

    这个问题十分高级,随着Ubuntu版本的变迁这个问题的解决方案也在不断变化 最开始,SystemSettings里面可以设置工具条背景色,后来这个选项在新版本Ubuntu中消失了 我用过Ubuntu1 ...

  5. 玩转WIN7的MKLINK

    引言: 换了新电脑,终于再次使用上啦WIN7 ,经过一个周每天重装N次系统,终于弄好一个像样的系统啦.由于使用rt7lite对WIN7SP1官方整合包进行了适当精简,所以最终系统的稳定性还得经过一段时 ...

  6. 委托(delegate)

    委托(dekegate)是一种动态调用方法的类型,与类.接口和数组相同,属于引用型,可以用来实现多路广播(MulticastDelegate). 多路广播(MulticastDelegate):可以用 ...

  7. myeclipse下java文件乱码问题解决

    中文乱码是因为编码格式不一致导致的.1.进入Eclipse,导入一个项目工程,如果项目文件的编码与你的工具编码不一致,将会造成乱码.2.如果要使插件开发应用能有更好的国际化支持,能够最大程度的支持中文 ...

  8. Maven的生命周期和插件

    首先解释下maven build等 Maven build是这个插件让你自己去配置执行目标的.Maven clean 清除上一次Maven执行的结果Maven generate-sources会根据p ...

  9. canvas模拟重力效果

    总结 速度和加速度是动画的基础元素,其中两者都是向量,包括了一个重要因素:方向. 要学会应用 分解 和 合成 ,将速度或加速度分解到x.y轴上,然后将每条轴上的加速度或速度相加,然后再分别与物体的位置 ...

  10. URI 中特殊字符处理

    一.问题阐述 今天写 url 请求时,不管是get 请求还是 post 请求,如果参数中带有 + % # 等特殊符号,就无法正常获得参数 具体现象就是 用URL传参数的时候,用&符号连接,如果 ...