UVA11181Probability|Given(条件概率)
紫书P327
题意:有n个人准备去超市逛,其中第i个人买东西的概率是 Pi 。逛完以后你得知有 r 个人买了东西。根据这一信息,计算每个人实际买东西的概率。输入 n ( 1 <= n <= 20 )和r( 0 <= r <= n) 输出每个人实际买了的东西概率
分析: “ r 个人买了东西 ” 这个事件叫做E, “ 第 i 个人买东西 ”这个事件叫做 Ei ,要求的就是 P( Ei | E ) = P ( Ei E) / P ( E ) ;
P(E)的求法利用全概率公式,每一种可能的情况的概率相加,假设 n = 4, r = 2, 有6中可能:1100,1010,1001,0110,0101,0011,其中1100的概率就是P1 * P2 * ( 1 - P3) * ( 1 - P4), 其他的类似,假设求 P ( E1 E ) 就等于所有 P1 被访问过的,即等于1的每种可能之和,sum[ i ] 表示 vis[ i ] = 1 的概率之和,tot表示总概率和
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int Max = ;
double p[Max],sum[Max],tot;
int n,r;
int vis[Max],A[Max];
void dfs(int cur, int cnt)
{
if(cnt == r)
{
double ans = ;
for(int i = ; i <= n; i++)
{
if(vis[i])
{
ans *= p[i];
}
else
{
ans *= ( - p[i]);
}
}
for(int i = ; i <= n; i++)
{
if(vis[i])
{
sum[i] += ans;
}
}
tot += ans;
}
for(int i = cur + ; i <= n; i++)
{
if(vis[i] == )
{
vis[i] = ;
A[cnt + ] = i;
dfs(i, cnt + );
vis[i] = ;
}
}
}
int main()
{
int test = ;
while(scanf("%d%d", &n, &r) != EOF)
{
if(n == && r == )
break;
for(int i = ; i <= n; i++)
{
scanf("%lf", &p[i]);
}
memset(vis, , sizeof(vis));
memset(sum, , sizeof(sum));
tot = ;
dfs(,);
printf("Case %d:\n", ++test);
for(int i = ; i <= n; i++)
{
printf("%.6lf\n", sum[i] / tot);
}
}
return ;
}
UVA11181Probability|Given(条件概率)的更多相关文章
- 布朗语料库中条件概率分布函数ConditionalFreqDist使用
布朗语料库中使用条件概率分布函数ConditionalFreqDist,可以查看每个单词在各新闻语料中出现的次数.这在微博情感分析中非常有用,比如判断feature vector中代表positive ...
- UVa 11181 条件概率
题意:n个人选r个人,每个人被选中的概率为pi,问最后每个人被选中的概率是多少. sol:就是个简单的概率题,范围还特别小,深搜秒出...然而公式什么的很多还是需要注意的... 条件概率的公式 ...
- uva11181Probability|Given
枚举,条件概率. 2^20次方等于100w,是大约可以没准还能过的. 二进制枚举时,如果买东西的人恰好为r个,设概率为p,就将sum[i]+=p(sum[i]为r个人买东西时第i个人买东西的概率),t ...
- 学习笔记DL008:概率论,随机变量,概率分布,边缘概率,条件概率,期望、方差、协方差
概率和信息论. 概率论,表示不确定性声明数学框架.提供量化不确定性方法,提供导出新不确定性声明(statement)公理.人工智能领域,概率法则,AI系统推理,设计算法计算概率论导出表达式.概率和统计 ...
- 13张动图助你彻底看懂马尔科夫链、PCA和条件概率!
13张动图助你彻底看懂马尔科夫链.PCA和条件概率! https://mp.weixin.qq.com/s/ll2EX_Vyl6HA4qX07NyJbA [ 导读 ] 马尔科夫链.主成分分析以及条件概 ...
- 【概率论】条件概率 & 全概率公式 & 朴素贝叶斯公式
0. 说明 条件概率 & 全概率公式 & 朴素贝叶斯公式 学习笔记 参考 scikit-learn机器学习(五)--条件概率,全概率和贝叶斯定理及python实现 1. 条件概率 [定 ...
- "二阶“条件概率
公式: P(E|F)=P(E|GF)P(G|F)+P(E|GcF)P(Gc|F) 解释: 已知F发生,E发生的条件概率为P(E|F). 现在多考虑一个条件G,G可能发生也可能不发生. 若F已发生条件下 ...
- Probability|Given UVA - 11181(条件概率)
题目大意:n个人去购物,要求只有r个人买东西.给你n个人每个人买东西的概率,然后要你求出这n个人中有r个人购物并且其中一个人是ni的概率pi. 类似于5个人中 抽出三个人 其中甲是这三个人中的一个的 ...
- UVa 11181 - Probability|Given(条件概率)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
随机推荐
- HashSet<T>类 用法
HashSet<T>类主要是设计用来做高性能集运算的,例如对两个集合求交集.并集.差集等.集合中包含一组不重复出现且无特性顺序的元素 改变集的值的方法: HashSet<T>的 ...
- 关于iphone 6 ios8网站背景图片错乱的问题解决办法
最近公司有个客户的网站用手机safari打开出现背景图片错乱,本来应该显示A图片的却显示B图片,网速越慢的情况下越容易出现这种问题,悲催的是这种情况只在iPhone 6上出现,并且不是一直这样,多刷新 ...
- vijos-1447 开关灯泡-大整数开方算法
描述 一个房间里有n盏灯泡,一开始都是熄着的,有1到n个时刻,每个时刻i,我们会将i的倍数的灯泡改变状态(即原本开着的现将它熄灭,原本熄灭的现将它点亮),问最后有多少盏灯泡是亮着的. 提示 范围:40 ...
- 1031MySQL事务隔离级别详解
转自http://xm-king.iteye.com/blog/770721 SQL标准定义了4类隔离级别,包括了一些具体规则,用来限定事务内外的哪些改变是可见的,哪些是不可见的.低级别的隔离级一般支 ...
- jq实现登陆页面的拖拽功能
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <script src ...
- extjs 箱子布局
a.flex 配置项 flex 配置项不是设置在布局上,而是设置在子项的配置项.每个子项相对的 flex 值都会与全体子项 flex 累加的值相比较,根据此结果,处理每个子项的 flex 最后是多少. ...
- Java反射机制学习与研究
Java反射机制:可以获取正在运行时的Java对象. 1.判断运行时对象对象所属的类. 2.判断运行时对象所具有的成员变量和方法. 3.还可以调用到private方法,改变private变量的值. S ...
- nginx配置实战1----配置虚拟主机
1 nginx虚拟主机的概念 虚拟主机是在网络服务器上划分出一定的磁盘空间供用户放置站点.应用组件等,提供必要的站点功能.数据存放和传输功能,所谓虚拟主机,也叫"网站空间",就是把 ...
- hdu4725最短路变形 添加点
The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- Shiro 学习笔记(一)——shiro简介
Apache Shiro 是一个安全框架.说白了,就是进行一下 权限校验,判断下这个用户是否登录了,是否有权限去做这件事情. Shiro 可以帮助我们完成:认证.授权.加密.会话管理.与web 集成. ...