UOJ263 【NOIP2016】组合数问题
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
题目描述
组合数 CmnCnm 表示的是从 nn 个物品中选出 mm 个物品的方案数。举个例子,从 (1,2,3)(1,2,3) 三个物品中选择两个物品可以有 (1,2),(1,3),(2,3)(1,2),(1,3),(2,3) 这三种选择方法。根据组合数的定义,我们可以给出计算组合数 CmnCnm 的一般公式:
其中 n!=1×2×⋯×nn!=1×2×⋯×n;特别地,定义 0!=10!=1。
小葱想知道如果给定 n,mn,m 和 kk,对于所有的 0≤i≤n,0≤j≤min(i,m)0≤i≤n,0≤j≤min(i,m) 有多少对 (i,j)(i,j) 满足 CjiCij 是 kk 的倍数。
输入格式
从标准输入读入数据。
第一行有两个整数 t,kt,k,其中 tt 代表该测试点总共有多少组测试数据,kk 的意义见问题描述。
接下来 tt 行每行两个整数 n,mn,m,其中 n,mn,m 的意义见问题描述。
输出格式
输出到标准输出。
tt 行,每行一个整数代表所有的 0≤i≤n,0≤j≤min(i,m)0≤i≤n,0≤j≤min(i,m) 中有多少对 (i,j)(i,j) 满足 CjiCij 是 kk 的倍数。
样例一
input
1 2
3 3
output
1
explanation
在所有可能的情况中,只有 C12=2C21=2 是 22的倍数。
样例二
input
2 5
4 5
6 7
output
0
7 正解:矩阵前缀和+组合数学
解题报告:
这是一道很简单的数学题,可以发现其实如果根据组合中的一个基本公式:C(n,m)=C(n-1,m)+C(n-1,m-1),就可以直接递推出2000以内的所有的组合数。而我们只需要判断有多少个点对满足是k的倍数,很容易想到只要对k取模,对于为0的C(i,j)是肯定满足是k的倍数的。
因为k是所有询问共用的,可以一开始就预处理出矩阵前缀和,之后每次O(1)查询就可以了。
注意事项:
很多人在考场上写的是质因数分解,但是很明显有一些k并不是质数,所以并不能直接分解,应该先对k进行质因数分解,在对于这些质因数在递推中分析。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <string>
#include <ctime>
#include <queue>
#include <vector>
#include <cstdlib>
using namespace std;
typedef long long LL;
const int MAXN = ;
int T,k,n,m,ans;
int C[MAXN][MAXN],a[MAXN][MAXN];
int sum[MAXN][MAXN]; void work(){
scanf("%d%d",&T,&k);
C[][]=C[][]=;
for(int i=;i<=;i++){
C[i][]=;
for(int j=;j<=i;j++) {
C[i][j]=C[i-][j-]+C[i-][j];
C[i][j]%=k;
if(C[i][j]==) {
a[i][j]=;
}
}
}
for(int i=;i<=;i++)
for(int j=;j<=;j++)
sum[i][j]=sum[i-][j]+sum[i][j-]-sum[i-][j-]+a[i][j]; while(T--) {
scanf("%d%d",&n,&m); m=min(m,n);
printf("%d\n",sum[n][m]);
}
} int main()
{
work();
return ;
}
UOJ263 【NOIP2016】组合数问题的更多相关文章
- Noip2016组合数(数论)
题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...
- noip2016组合数问题
题目描述 组合数 Cnm 表示的是从 n 个物品中选出 m 个物品的方案数.举个例子,从 (1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3) 这三种选择方法.根据组合数的 ...
- NOIP2016 组合数问题
https://www.luogu.org/problem/show?pid=2822 题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以 ...
- [Noip2016]组合数(数论)
题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...
- 2559. [NOIP2016]组合数问题
[题目描述] [输入格式] 从文件中读入数据. 第一行有两个整数t, k,其中t代表该测试点总共有多少组测试数据,k的意义见[问题描述]. 接下来t行每行两个整数n, m,其中n, m的意义见[问题描 ...
- Luogu 2822[NOIP2016] 组合数问题 - 数论
题解 乱搞就能过了. 首先我们考虑如何快速判断C(i, j ) | k 是否成立. 由于$k$非常小, 所以可以对$k$分解质因数, 接着预处理出前N个数的阶乘的因数中 $p_i$ 的个数, 然后就可 ...
- [noip2016]组合数问题<dp+杨辉三角>
题目链接:https://vijos.org/p/2006 当时在考场上只想到了暴力的做法,现在自己看了以后还是没思路,最后看大佬说的杨辉三角才懂这题... 我自己总结了一下,我不能反应出杨辉三角的递 ...
- NOIP 2016 组合数问题
洛谷 P2822 组合数问题 洛谷传送门 JDOJ 3139: [NOIP2016]组合数问题 D2 T1 JDOJ传送门 Description 组合数Cnm表示的是从n个物品中选出m个物品的方案数 ...
- noip 2016提高组D2T1 problem
我们可以先预处理一下组合数模K的值,然后我们可以发现对于答案ji[n][m],可以发现递推式ji[i][j]=ji[i-1][j]+ji[i][j-1]-ji[i-1][j-1]并对于Cij是否%k等 ...
- OI 刷题记录——每周更新
每周日更新 2016.05.29 UVa中国麻将(Chinese Mahjong,Uva 11210) UVa新汉诺塔问题(A Different Task,Uva 10795) NOIP2012同余 ...
随机推荐
- js 点击默认另存 ,不是打开 Blob 操作
function savepic(obj) { if (memFileObj != undefined) { obj = memFileObj; } else { memFileObj = obj; ...
- 《Node.js开发实战详解》学习笔记
<Node.js开发实战详解>学习笔记 ——持续更新中 一.NodeJS设计模式 1 . 单例模式 顾名思义,单例就是保证一个类只有一个实例,实现的方法是,先判断实例是否存在,如果存在则直 ...
- 安装 SQL SERVER 2008 必须使用 "角色管理工具" 错误 的 解决方案 (转)
刚在服务器(Win2008)上安装SqlServer2008的时候出现了这么一个报错——必须使用“角色管理工具”安装或配置Microsoft .NET Framework 3.5 SP1.一开始以为是 ...
- 通用权限管理系统组件3.9 的 Oracle 数据库创建脚本参考
---------------------------------------------------- -- Export file for user USERCENTER -- -- Create ...
- 扩展 easyui 控件系列:为datagrid 增加过滤行
此功能还为真正完成,起到抛砖引玉的效果,发动大家的力量把这个功能完善起来,效果图如下: 基本上就是扩展了 datagrid.view 中的onAfterRender 这个事件,具体代码如下: $.ex ...
- JavaScript中的类型转换(一)
前言 JavaScript是一种非常灵活的弱类型的语言,它的灵活性的一方面体现在其繁杂多样的类型转换.比如当JavaScript期望使用一个布尔值的时候(比如if语句中)你可以提供任一类型的值,Jav ...
- C8051逆向电阻屏:头儿拍脑袋说电阻屏IC好赚钱3块钱成本能卖20几块。,一个月不分昼夜逆向成功后头儿说电阻屏已经被市场淘汰请放弃治疗。
参考: 书籍,<圈圈教你玩USB> C8051F单片机快速入门:http://www.waveshare.net/Left_Column/C8051F_Application_Notes ...
- checkbox js onclick ajax,列表页表格中修改数据
<input type='checkBox' value='".$row["p_id"]."' onclick='changeisNew(this);'& ...
- 个人觉得目前 最好用的Taobao API的NodeJS封装
话说,Top API SDK默认只给了四种语言的SDK,没有我大NodeJS,这可怎么行,于是封装了一个. 参考地址 GitHub: https://github.com/xiaoppp/TopAPI ...
- [BZOJ2429][HAOI2006]聪明的猴子(MST)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2429 分析:要让最大的最小,所以就是最小生成树上的啦,于是问题就变成了有多少个猴子&g ...