PS:

这个好像是Python2.X版本的使用。

这个课件的numpy的介绍还是太少了,有点凌乱的感觉,要是后面还是要以《利用Python进行数据分析》做numpy和pandas课件笔记比较好。

要学会和掌握,通过实战,但是至少要懂得numpy的方式。

一、numpy(numeric Python)

1.定义:

高效方便的科学计算工具

2.优势:

2.1方便处理向量,矩阵

2.2相比于MATLAB免费

3.简单实用(版本查询)

import numpy as np

np.version.full_version

二、多维数组(homogeneous multidimensional)

1.一维数组

a=np.arange(20)

numpy.ndarray

a=a.reshape(4,5)#这个在《利用Python进行数据分析》算是numpy的高级用法

print(a)

a=a.reshape(2,2,5)#2个数组,2和5是2row,5col

print(a)

2.简单要素描绘

查看维度:

a.ndim

查看维度大小:

a.shape

查看全部的元素个数:

a.size

查看元素类型:

a.dtype

查看元素站位(bytes):

a.dtype

三、创建数组

1.高维数组转换嵌套列表:

raw=[1,2,3,4,5]

a=np.array(raw)

raw=[[0,1,2,3,4],[5,6,7,8,9]]

b=np.array(raw)

2.0数组:

d=(4,5)

np.zeros(d)

3.1数组

d=(4,5)

np.ones(d,dtype=int)

4.随机数组

生成[0,1)区间的随机数数组:

np.random.rand(5)

四、数组操作

1.加减乘除开根(这个的数据处理,必须是两个数组的结构要一致,对应的位置进行处理)

2.生成二维随机数组

  a=np.arange(20).reshape(4,5)

3.步长生成:arange(起始,终止,步长)

  a=np.arange(2,45,3).reshape(5,3)

4.生成一维数组

  np.linspace(0,2,9)

五、数组元素访问

访问:

a=np.array([[3.2,1.5],[2.5,4]])

print(a[0][1])

print(a[0,1])

修改:

a[0][1]=值

广播机制:

1.    b=a

  a修改

  b修改

2. b=a.copy()

  a修改

  b不修改

取矩阵中的指定列:

  a=np.arange(20).reshape(4,5)

  print(a[:,[1,3]])#先行后列,这里是指所有行,1,3是指第1列和第3列

筛选:

  a[;,2][a[:,0]>5]

查找指定值:

  loc=np.where(a==值)

  print(loc)

  print(a[loc[0][0],loc[1][0]])

六、数组操作

1.矩阵转置

a=np.random.rand(2,4)

a=np.transpose(a)

b=np.random.rand(2,4)

b=np.mat(b)

print(b.T)#转置

2.矩阵求逆

import numpy.linalg as nlg
a = np.random.rand(2,2)
a = np.mat(a)
print ("a:")
print(a)
ia = nlg.inv(a)
print( "inverse of a:")
print (ia)

print ("a * inv(a)")
print (a * ia)

3.求特征值和特征向量

a = np.random.rand(3,3)
eig_value, eig_vector = nlg.eig(a)
print( "eigen value:")
print( eig_value)
print( "eigen vector:")
print(eig_vector)

4.拼接两个向量

1.column_stack函数

a = np.array((1,2,3))
b = np.array((2,3,4))
print np.column_stack((a,b))

2.vstack,hstack函数

a = np.random.rand(2,2)
b = np.random.rand(2,2)
print( "a:")
print (a)
print ("b:")
print (b)
c = np.hstack([a,b])
d = np.vstack([a,b])
print( "horizontal stacking a and b:")
print( c)
print ("vertical stacking a and b:")
print( d)

七、缺失值

a = np.random.rand(2,2)
a[0, 1] = np.nan
print (np.isnan(a))
[[False True]
[False False]]

第三天:numpy库的更多相关文章

  1. numpy库的学习笔记

    一.ndarray 1.numpy 库处理的最基础数据类型是由同种元素构成的多维数组(ndarray),简称“数组”. 2.ndarray是一个多维数组的对象,ndarray数组一般要求所有元素类型相 ...

  2. Numpy库的学习(三)

    今天我们继续学习一下Numpy库的学习 废话不多说 ,开始讲 比如我们现在想创建一个0-14这样一个15位的数组 可以直接写,但是很麻烦,Numpy中就给我们了一个方便创建的方法 numpy中有一个a ...

  3. numpy库:常用基本

    numpy 本文主要列出numpy模块常用方法 大部分内容来源于网络,而后经过自己的一点思考和总结,如果有侵权,请联系我 我是一名初学者,有哪些地方有错误请留言,我会及时更改的 创建矩阵(采用ndar ...

  4. 初识NumPy库-基本操作

    ndarray(N-dimensional array)对象是整个numpy库的基础. 它有以下特点: 同质:数组元素的类型和大小相同 定量:数组元素数量是确定的 一.创建简单的数组: np.arra ...

  5. numpy库常用基本操作

    NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推.在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量.比如说,二维数组相当于是一个一维数 ...

  6. Numpy库(个人学习笔记)

    一样,咱的计算机还是得先拥有Python,并且安装了Numpy库.有疑问的话可以看这里呦~~~~ 下面开讲: NumPy的主要对象是齐次多维数组.它是一个元素表(通常是数字),并且都是相同类型,由正整 ...

  7. Numpy库的学习(一)

    今天来学习一下Python库中,支持高级大量的维度数组与矩阵运算的神奇的Numpy库 Numpy同时也对数组运算提供大量的数学函数,对于大量计算运行效率极好 是大量机器学习框架的基础库 废话不多说,直 ...

  8. NumPy库实现矩阵计算

    随着机器学习技术越来越向着整个社会进行推广,因此学好线性代数和Python当中的numpy库就相当重要了.我们应该知道numpy库的使用是sklearn库和opencv库的基础.主要用于矩阵的计算.当 ...

  9. numpy 库使用

    numpy 库简单使用 一.numpy库简介 Python标准库中提供了一个array类型,用于保存数组类型的数据,然而这个类型不支持多维数据,不适合数值运算.作为Python的第三方库numpy便有 ...

  10. 数据分析与科学计算可视化-----用于科学计算的numpy库与可视化工具matplotlib

    一.numpy库与matplotlib库的基本介绍 1.安装 (1)通过pip安装: >> pip install matplotlib 安装完成 安装matplotlib的方式和nump ...

随机推荐

  1. 手机app抓包

    简介 爬虫是cs架构中的c端 原理是模拟浏览器向服务器发送请求 如果要爬取手机APP的数据,APP也是服务端与浏览器性质相同 我们只要获取到手机APP给服务器发送数据 并加以分析就能模拟它的请求 从而 ...

  2. python脚本练习之编译安装python

    练习 py-shelll #coding=utf-8 import os,sys if os.getuid() == 0: pass else: print('当前用户不是root,请以root用户执 ...

  3. unity 根据平板 或者 手机 确立横竖屏

    /* ######### ############ ############# ## ########### ### ###### ##### ### ####### #### ### ####### ...

  4. java解压多层目录中多个压缩文件和处理压缩文件中有内层目录的情况

    代码: package com.xiaobai; import java.io.File; import java.io.FileOutputStream; import java.io.IOExce ...

  5. fusion使用——程序集绑定冲突工具

    1.以管理员身份运行vs命令提示符 2.运行 fuslogvw 3.以管理员身份运行Powershell To Enable:(确保fusion日志的文件夹D:\FusionLog\的存在) Set- ...

  6. 移动端input“输入框”常见问题及解决方法

    转自 https://www.cnblogs.com/ljx20180807/p/9837748.html 1. ios中,输入框获得焦点时,页面输入框被遮盖,定位的元素位置错乱: 当页input存在 ...

  7. 实现一个类似 http-server 的静态服务 一一 ks-server

    最近没事,学习了一下 node,觉得 http-server 这个静态服务很神奇,突发奇想,自己也来实现这么一个静态服务试试.我暂且起名为 static-server. 1. 初始化项目: cd my ...

  8. XML 与 XML Schema的使用教程

    引言:我写本文的宗旨在于给需要使用XML,而又对XML不是很熟悉的人们提供一种使用思路,而不没有给出具体的     使用方法,至于下文中提到的使用方法,还未尝试过,都是从网上整理而来! 一.概述 什么 ...

  9. [数据算法]D1.BloomFilter

    BloomFilter是一种高效的去重算法,算法的要义是散列对比. 1.原理 当一个元素加入集合时,判断这个元素是否 2.举例 例如我要对URL去重(这个在爬虫上可以用): URL1 -> 3. ...

  10. locust启动命令

    locust运行测试脚本 locust -f .\load_test.py --host=https://www.baidu.com -f 指定性能测试脚本文件. --host 指定被测试应用的URL ...