[物理学与PDEs]第3章第1节 等离子体
1. 磁流体力学研究等离子体这种导电流体在电磁场中的运动.
2. 任何物质由于 $T, p$ 等条件的不同而可以处于固态、液态、气态 (常见的三种聚集态) 或等离子体.
3. 等离子体就是电离气体, 它由电子、离子及中性粒子三种成分组成; 是一种完全电离或部分电离了的物理状态.
4. 虽然显示生活中的物质以固态、液态、气态存在; 但茫茫宇宙中却有 $99\%$ 以上的物质是等离子体. 如大气层中的电离层就是由等离子体构成.
5. Crookes 于 1879 年首先提出了物质第四态的存在; Langmir, Tanks 于 1929 年首先引入了其名称: 等离子体; Alfv\'en 于 19 世纪 40 年代建立了磁流体力学. 后来, 天体物理、受控核聚变的研究为磁流体力学的发展提供了动力.
6. 等离子体的特征: 电中性, 不论是宏观来看还是微元来看.
7. 由于 $T\gg 1$, 而 $\chi_m\sim 0$. 于是 ${\bf B}=\mu_0 {\bf H}$.
8. 由于等离子体是良导体, 难以建立强的电场 ${\bf E}$, 而 $E\ll H$. 故以后 ${\bf H}$ 是讨论的重点.
[物理学与PDEs]第3章第1节 等离子体的更多相关文章
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
随机推荐
- 英语口语练习系列-C11-了解
词汇 actor [ˈæktə(r)] n. 男演员 He is a good actor. 他是一个好演员. afternoon [ˌɑ:ftəˈnu:n] n. 下午 a boring after ...
- 英语口语练习系列-C08-考试
<蒹葭>-诗经 蒹葭苍苍,白露为霜.所谓伊人,在水一方.溯洄从之,道阻且长.溯游从之,宛在水中央. 蒹葭萋萋,白露未晞.所谓伊人,在水之湄.溯洄从之,道阻且跻.溯游从之,宛在水中坻. 蒹葭 ...
- Eclipse编程中免除alt+斜杠,设置自动提示
用eclipse进行编程时,设置自动提示 .abcdefghijklmnopqrstuvwxyz@
- android 实现点击edittext的“小眼睛”切换明密文
android 实现点击edittext的“小眼睛”切换明密文 版权声明:本文为博主原创文章,未经博主允许不得转载. 很多时候,我们为了用户的隐私安全,需要在密码输入的时候,显示密文.为了更 ...
- Spring Security(二十九):9.4.1 ExceptionTranslationFilter
ExceptionTranslationFilter is a Spring Security filter that has responsibility for detecting any Spr ...
- ELK原理与简介
为什么用到ELK: 一般我们需要进行日志分析场景:直接在日志文件中 grep.awk 就可以获得自己想要的信息.但在规模较大的场景中,此方法效率低下,面临问题包括日志量太大如何归档.文本搜索太慢怎么办 ...
- Spring:AOP面向切面编程
AOP主要实现的目的是针对业务处理过程中的切面进行提取,它所面对的是处理过程中的某个步骤或阶段,以获得逻辑过程中各部分之间低耦合性的隔离效果. AOP是软件开发思想阶段性的产物,我们比较熟悉面向过程O ...
- Shell命令-文件及内容处理之head、tail
文件及内容处理 - head.tail 1. head:显示文件内容头部 head命令的功能说明 head 命令用于显示文件头部内容,默认执行 head 命令会输出文件开头的 10 行. head命令 ...
- Ajax提交表单初接触
<!doctype html> <html class="no-js"> <head> <meta charset="utf-8 ...
- Vue子组件与父组件之间的通信
1.环境搭建 下载 vue-cli:npm install -g vue-cli 初始化项目:vue init webpack vue-demo 进入vue-demo文件夹:cd vue-demo 下 ...